Cells migrate collectively by intermittent bursts of activity

This is how cells are migrating. He-La cells - the oldest and most commonly used human cell line - on collagen substrate: time evolution of the front superimposed on the first frame of experiment. Credit: Oleksandr Chepizhko / Aalto University

When you have got a wound and it starts healing, cells start to migrate in your body to the wound. They are driven by active internal forces to invade the available space. Cell migration doesn't only take place when you are getting better. In cancer invasion cells also migrate collectively.

Tissue formation during embryonic development requires the orchestrated movement of cells to specific locations. In general, cell migration is a central process in the development and maintenance of multicellular organisms.

Researchers of Aalto University and their research partners have now discovered that this motion occurs by intermittent bursts of activity. It can be described by universal scaling laws similar to the ones observed in other driven systems outside of biology.

– Our results demonstrate that living systems display universal non-equilibrium critical fluctuations, induced by cell mutual interactions, that are usually associated to externally driven inanimate media, says Oleksandr Chepizhko, Postdoctoral Researcher at Aalto University.

Researchers substantiated the analogy between collective cell migration and depinning by revealing and characterizing widely distributed bursts of activity in the collective migration of different types cells over different substrates and experimental conditions.

After that, they compared the experiments with simulations of a computational model of active particles. They found that in all these cases the statistical properties of the bursts follow universal scaling laws that are quantitatively similar to those observed in driven disordered systems.

Errors during cell migration may have serious consequences. For instance, errors may cause vascular disease, intellectual disability, metastasis or tumor formation. Increased understanding of the mechanism by which cells migrate may lead to the development of new therapeutic strategies for controlling, for example, invasive tumour cells.

Full bibliographic information

Oleksandr Chepizhko et al.: Bursts of activity in collective cell migration. PNAS 2016. DOI 10.1073/pnas.0709640104

Notes for editors

For more information:
Mikko Alava
Professor, Department of Applied Physics, School of Science, Aalto University
mikko.alava@aalto.fi
https://people.aalto.fi/new/mikko.alava

Tweet: Cells migrate collectively by intermittent bursts of activity @aaltouniversity DOI 10.1073/pnas.0709640104

Media Contact

Visa Noronen AlphaGalileo

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…