Cheaper mRNA Vaccines

Bernd Nidetzky and his team succeeded in the biocatalysis of pseudouridine
Credit: Helmut Lunghammer / TU Graz

Graz University of Technology Researchers Produce Pseudouridine through Biocatalytic Synthesis,

The new and patented method for the production of the important mRNA vaccine component pseudouridine is more efficient, sustainable and cost-effective than the previously used chemical synthesis.

Researchers from the Institute of Biotechnology and Biochemical Engineering at TU Graz and the Austrian Centre of Industrial Biotechnology (acib) have developed a novel method for the production of central components of mRNA vaccines and applied for a patent. In an article published in the specialist journal Nature Communications (https://www.nature.com/articles/s41467-023-37942-7.epdf), Bernd Nidetzky, Martin Pfeiffer and Andrej Ribar explain how they produced the essential vaccine ingredient pseudouridine by means of biocatalytic synthesis and thus created an alternative to the previous method of chemical synthesis.

One process step is sufficient

This alternative offers some decisive advantages. The chemical synthesis of pseudouridine not only involves toxic reagents and rare raw materials, but is also very energy- and time-consuming due to the necessary four to eight process steps and cooling to minus 20 degrees. Biocatalysis, on the other hand, requires only one process step with four parallel reactions that take place at room temperature. In addition, only four enzymes are needed as catalysts (uridine phosphorylase, phosphopentose mutase, pseudouridine monophosphate glycosidase and phosphatase), and these can be produced quite easily with E.coli bacteria. Biocatalysis also produces no waste materials; the only waste is phosphate, but this is recycled again during the catalysis process.

Another important advantage is efficiency. Since, in short, the chemical production of pseudouridine converts the naturally occurring uridine, which is less efficient for vaccines, there is no 100 per cent yield during the conversion process. However, due to the smaller number of process steps, biocatalytic synthesis achieves a yield of 92 to 95 per cent, compared to just 40 to 50 per cent for the chemical processes published so far.

Inspiration from nature

The researchers based the development of this new process on one of their earlier studies in which they discovered that the YeiN enzyme is a biocatalyst for the production of C-nucleotides. Since pseudouridine is the C-nucleoside of the RNA building block uridine, they had the idea of taking uridine, which can be produced in large quantities by means of bacterial fermentations, as a raw material and re-establishing the bond between its basic building blocks. The inspiration for this came from nature.

Unlike pseudouridine, uridine has an N-glycosidic bond, which is cleaved into ribose-1-phosphate (sugar) and uracil during natural degradation in cells by means of the enzyme uridine phosphorylase. Then the enzyme phosphopentose mutase comes into play, which rearranges the ribose-1-phosphate to ribose-5-phosphate, which is metabolised in the cells. This is followed by the application of the YeiN enzyme, which is used to link the ribose-5-phosphate and the uracil to pseudouridine-5-phosphate. Phosphatase is used to split off the phosphate from the pseudouridine and the goal is reached. Since pseudouridine is much less water-soluble than uridine, it simply crystallises in the course of the reaction and can therefore be easily obtained by filtering the reaction supernatant.

Production soon on a larger scale

“Our work shows that biocatalysis is a potent alternative to the chemical synthesis of C-nucleotides such as pseudouridine,” explains Bernd Nidetzky, head of the Institute of Biotechnology and Biochemical Engineering at TU Graz. “We hope to implement the production on a larger scale soon and thus make pseudouridine available sustainably and cheaply in larger quantities. This could possibly also make the production of mRNA vaccines cheaper in the medium term, as potential partners from industry could implement our application quite promptly.”

Wissenschaftliche Ansprechpartner:

Bernd NIDETZKY
Univ.-Prof. Dipl.-Ing. Dr.techn. Dr.h.c.
TU Graz | Institute of Biotechnology and Biochemical Engineering
Phone: +43 316 873 8400
bernd.nidetzky@tugraz.at

Martin PFEIFFER
Dipl.-Ing. Dr.techn. BSc
TU Graz | Institute of Biotechnology and Biochemical Engineering
Phone: +43 316 873 8415
martin.pfeiffer@tugraz.at

Originalpublikation:

Original publication: https://www.nature.com/articles/s41467-023-37942-7
Authors: Bernd Nidetzky, Martin Pfeiffer, Andrej Ribar

DOI: https://doi.org/10.1038/s41467-023-37942-7

http://www.tugraz.at

Media Contact

Mag. Falko Schoklitsch Kommunikation und Marketing
Technische Universität Graz

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Organic matter on Mars was formed from atmospheric formaldehyde

Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually…

Engineers 3D print sturdy glass bricks for building structures

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. What if construction materials could be put together and taken apart as…

New organic thermoelectric device

… that can harvest energy at room temperature. Researchers have succeeded in developing a framework for organic thermoelectric power generation from ambient temperature and without a temperature gradient. Researchers have…

Partners & Sponsors