DisCo: Boosting the efficiency of single-cell RNA sequencing

Close-up of the microfluidics enabling deterministic co-encapsulation of single cells at outstanding efficiencies.
Credit: Jörn Pezoldt (EPFL)

Single-cell RNA sequencing, or “scRNA-seq” for short, is a technique that allows scientists to study the expression of genes in an individual cell within a mixed population – which is virtually how all cells exist in the body’s tissues. Part of a larger family of “single-cell sequencing” techniques, scRNA-seq involves capturing the RNA of a single cell and, after multiple molecular conversion reactions, sequencing it. Since RNA is the intermediate step from gene (DNA) to protein, it provides an overview about which genes in that particular cell are active and which are not.

Because scRNA-seq captures the activity of all genes in the cell’s genome – thousands of genes at once – it has become the gold standard for defining cell states and phenotypes. This kind of data can reveal rare cell types within a cell population, even types never seen before.

Cost and efficiency

But scRNA-seq isn’t just a tool for basic cell biology; it has been widely adopted in medical and pharmacological research as it is capable of identifying which cells are actively dividing in a tissue, or which are reacting to a particular drug or treatment.

“These single-cell approaches have transformed our ability to resolve cellular properties across systems,” says Professor Bart Deplancke at EPFL’s School of Life Sciences. “The problem is that they are currently tailored toward large cell inputs.”

This isn’t a trivial problem, as scRNA-seq methods require over a thousand cells for a useful measurement. Dr Johannes Bues, a researcher in Deplancke’s group, adds: “This renders them inefficient and costly when processing small, individual samples such as small tissues or patient biopsies, which tends to be resolved by loading bulk samples, yielding confounded mosaic cell population read-outs.”

The DisCo solution

Bues, with Marjan Biočanin and Joern Pezoldt, also in Deplancke’s group, have now developed a new method that allows scRNA-seq to efficiently process samples with fewer cells. Published in Nature Methods, the method is dubbed “DisCo” for “deterministic, mRNA-capture bead and cell co-encapsulation dropleting system”.

Unlike usual single-cell methods that rely on passive cell capture, DisCo uses machine-vision to actively detect cells and capture them in droplets of oil and beads. This approach allows for continuous operation, and also renders scaling and serial processing of cell samples highly cost efficient.

As shown in the study, DisCo features precise particle and cell positioning, and controls droplet sorting through combined machine-vision and multilayer microfluidics. All this allows for continuous processing of low-input single cell suspensions at high capture efficiency (over 70%) at speeds that can reach 350 cells per hour.

To further showcase DisCo’s unique capabilities, the researchers tested it on the small chemosensory organs of the Drosophila fruit fly, as well as on individual intestinal crypts and organoids. The latter are tiny tissues grown in culture dishes closely resembling actual organs – a field that EPFL has been spearheading for years.

The researchers used DisCo to analyze individual intestinal organoids at different developmental stages. The approach painted a fascinating picture of heterogeneity in the organoids, detecting various distinct organoid subtypes of which some had never been identified before.

“Our work demonstrates the unique ability of DisCo to provide high-resolution snapshots of cellular heterogeneity in small, individual tissues,” says Deplancke.

Other contributors

  • EPFL Laboratory for Stem Cell Bioengineering
  • EPFL Soft Materials Laboratory
  • Swiss Institute of Bioinformatics (SIB)
  • VIB Center for Inflammation Research
  • Ghent University
  • ETH Zürich

Reference

Johannes Bues, Marjan Biočanin, Joern Pezoldt, Riccardo Dainese, Antonius Chrisnandy, Saba Rezakhani, Wouter Saelens, Vincent Gardeux, Revant Gupta, Rita Sarkis, Julie Russeil, Yvan Saeys, Esther Amstad, Manfred Claassen, Matthias Lutolf, Bart Deplancke. Deterministic scRNA-seq captures variation in intestinal crypt and organoid composition. Nature Methods 18 February 2022. DOI: 10.1038/s41592-021-01391-1

Journal: Nature Methods
DOI: 10.1038/s41592-021-01391-1
Article Title: Deterministic scRNA-seq captures variation in intestinal crypt and organoid composition.
Article Publication Date: 14-Feb-2022

Media Contact

Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne
n.papageorgiou@epfl.ch
Office: 41-216-932-105

Expert Contact

Professor Bart Deplancke
EPFL
bart.deplancke@epfl.ch
Office: +41 21 693 18 21

www.epfl.ch

Media Contact

Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…