New discoveries in genetics of lung health
Scientists have for the first time discovered sixteen new sections of the genetic code that relate to lung health — opening up the possibility for better prevention as well as treatment for lung diseases.
An international consortium of 175 scientists from 126 centres in Europe, the USA and Australia identified genetic variants associated with the health of the human lung. Their discovery sheds new light on the molecular basis of lung diseases like Chronic Obstructive Pulmonary Disease (COPD).
It is the first time that these sixteen common genetic variants have been definitely linked with lung function. Researchers say the new pathways discovered could be targeted by drugs.
The study was led by Professor Martin Tobin from the University of Leicester, and Professor Ian Hall from The University of Nottingham and Dr Stephanie London from the U.S. National Institute of Environmental Health Sciences.
The pioneering research involved a genetic study of 2.5 million genetic variants in each of 48,201 people across the world. A smaller number of the most promising variants were then studied in a further 46,411 individuals. The research, part-funded by the UK Medical Research Council (MRC) and the Wellcome Trust, is published today in Nature Genetics.
The recent discoveries build on research published by the same authors last year, bringing the total number of genetic variants associated with lung function to twenty six. The same authors also showed, in research published in the American Journal of Respiratory and Critical Care Medicine in June 2011, that variants which predict lung function also predict the disease, COPD.
Professor Martin Tobin, Professor of Genetic Epidemiology and Public Health & MRC Senior Clinical Fellow at the University of Leicester, said: “COPD – a progressive disease that makes it hard for people to breathe – affects around 1 in 10 adults above the age of 40 and is fourth most common cause of death worldwide.
“Smoking is the most important risk for developing COPD. Smokers are not all equally likely to develop COPD and differences in susceptibility occur due to the genetic variants people carry. For the first time we understand what so many of these genetic variants are, including the underlying mechanisms that they point to. We now need to prioritise research to better understand these disease mechanisms and inform improved patient care.
“These discoveries could provide the key to new therapies for lung diseases such as COPD. It is too early to say whether this information would be of use as a screening test to predict the development of COPD. Stopping smoking is the best way to prevent COPD.
Professor Ian Hall said “This work is important because until recently we have not understood the factors which underlie inherited variability in lung function. The very large genetic studies required to identify key genes would not have been possible without the support of many groups around the world and the input of thousands of subjects. We now need to take the knowledge gained from this study to do two things: firstly to learn more about the function of genes which contribute to the risk of developing lung diseases such as COPD, and secondly to try and develop strategies to use genetic information to improve the clinical care provided to individual patients.”
Notes to editors
Lung function is commonly expressed using two measures recorded using a simple device called a spirometer. These measures are termed the FEV1 (or forced expiratory volume in 1 second) which is the volume of air that can be breathed out in 1 second, and the FVC (forced vital capacity) which is the total volume of air that can be breathed out. In chronic obstructive pulmonary disease (COPD), which encompasses chronic bronchitis and emphysema, narrowing of the airways causes a disproportionate reduction in FEV1. Cough, phlegm and shortness of breath are common symptoms of COPD. The simplest way to diagnose COPD is through spirometry, which is usually available in general practitioners' surgeries. Although there is no cure for COPD, stopping smoking and treatments can improve symptoms and reduce the impact of COPD on exercise and daily activities. Drug treatments include bronchodilators and, for exacerbations, may include short-term steroids. Patients with COPD are more susceptible to serious lung infections, so flu vaccination each winter is important.
The genetic determinants of COPD can be studied by investigating the genetic variants that affect the risk of developing COPD itself or by studying lung function itself, on which the diagnosis of COPD is based. Reduced lung function may also occur in patients with other airway diseases such as asthma.
Further research will be needed to study in detail the molecular alterations in the lung that result from the genetic variants identified, and to investigate whether these might be targeted by drugs.
More information is available from: Dr Martin Tobin on +44 (0)116 229 7270 mt47@leicester.ac.uk and Prof Ian Hall on +44 (0)115 8230019, ian.hall@nottingham.ac.uk
Media Relations Managers:
Ather Mirza in the University of Leicester's Press Office on +44(0)116 252 3335 : pressoffice@le.ac.uk
Emma Rayner in the University of Nottingham's Communications Office on +44 (0)115 951 5793, emma.rayner@nottingham.ac.uk;
Further information on lung function and on COPD and asthma is available from:
The British Lung Foundation:
The British Lung Foundation works for everyone affected by lung disease. The charity focuses its resources on providing support for people affected by lung disease today; and works in a variety of ways (including funding world-class research) to bring about positive change, to improve treatment, care and support for people affected by lung disease in the future. It provides information via its website www.lunguk.org and telephone helpline on 08458 50 50 20
Asthma UK
Asthma UK is the charity dedicated to improving the health and well-being of the 5.4million people in the UK with asthma. For more information visit asthma.org.uk
About the Medical Research Council
For almost 100 years the Medical Research Council has improved the health of people in the UK and around the world by supporting the highest quality science. The MRC invests in world-class scientists. It has produced 29 Nobel Prize winners and sustains a flourishing environment for internationally recognised research. The MRC focuses on making an impact and provides the financial muscle and scientific expertise behind medical breakthroughs, including the first antibiotic penicillin, the structure of DNA and the lethal link between smoking and cancer. Today MRC funded scientists tackle research into the major health challenges of the 21st century. www.mrc.ac.uk
The Wellcome Trust
The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.
About the University of Leicester
A member of the 1994 Group of universities that shares a commitment to research excellence, high quality teaching and an outstanding student experience.
Elite Without Being Elitist
Times Higher Awards Winner 2007, 2008, 2009, 2010
Follow us on Twitter http://twitter.com/uniofleicsnews
This is Leicester: http://www2.le.ac.uk/about/facts
The University of Nottingham
The University of Nottingham is ranked in the UK's Top 10 and the World's Top 100 universities by the Shanghai Jiao Tong (SJTU) and Times Higher (THE) World University Rankings.
More than 90 per cent of research at The University of Nottingham is of international quality, according to RAE 2008, with almost 60 per cent of all research defined as 'world-leading' or 'internationally excellent'. Research Fortnight analysis of RAE 2008 ranks the University 7th in the UK by research power. In 27 subject areas, the University features in the UK Top Ten, with 14 of those in the Top Five.
The University provides innovative and top quality teaching, undertakes world-changing research, and attracts talented staff and students from 150 nations. Described by The Times as Britain's “only truly global university”, it has invested continuously in award-winning campuses in the United Kingdom, China and Malaysia. Twice since 2003 its research and teaching academics have won Nobel Prizes. The University has won the Queen's Award for Enterprise in both 2006 (International Trade) and 2007 (Innovation — School of Pharmacy), and was named 'Entrepreneurial University of the Year' at the Times Higher Education Awards 2008.
Nottingham was designated as a Science City in 2005 in recognition of its rich scientific heritage, industrial base and role as a leading research centre. Nottingham has since embarked on a wide range of business, property, knowledge transfer and educational initiatives (www.science-city.co.uk) in order to build on its growing reputation as an international centre of scientific excellence. The University of Nottingham is a partner in Nottingham: the Science City.
More University of Nottingham news: http://communications/nottingham.ac.uk/
Media Contact
More Information:
http://www.leicester.ac.ukAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
New anti-cancer agent works without oxygen
Why tumors shrink but don’t disappear. “As tumors grow very quickly, consume a lot of oxygen and their vascular growth can’t necessarily keep pace, they often contain areas that are…
First blueprint of the human spliceosome revealed
Researchers detail the inner workings of the most complex and intricate molecular machine in human biology. Researchers at the Centre for Genomic Regulation (CRG) in Barcelona have created the first…
A paper-aluminum combo for strong, sustainable packaging
Takeout containers get your favorite noodles from the restaurant to your dining table (or couch) without incident, but they are nearly impossible to recycle if they are made from foil-lined…