Enhanced Sweet Taste: This is Your Tongue on Pot
“Our taste cells may be more involved in regulating our appetites than we had previously known,” said study author Robert Margolskee, M.D., Ph.D., a Monell molecular biologist. “Better understanding of the driving forces for eating and overeating could lead to interventions to stem the burgeoning rise in obesity and related diseases.”
Endocannabinoids are substances similar to THC, the active ingredient in marijuana. Produced in the brain and body, they bind with cannabinoid receptors to help regulate appetite and many other processes involved in health and disease.
“Endocannabinoids both act in the brain to increase appetite and also modulate taste receptors on the tongue to increase the response to sweets,” said study senior author Yuzo Ninomiya, Ph.D., Professor of Oral Neuroscience in the Graduate School of Dental Sciences at Kyushu University in Japan.
In the study, published online in the Proceedings of the National Academy of Sciences, the researchers conducted a series of experiments in mice to determine the behavioral, neural and cellular responses to sweet taste stimuli before and after the administration of endocannabinoids.
Sweet taste responses were enhanced by endocannabinoids in every case. The effect was specific for sweet taste, as endocannibinoids had no effect on responses to sour, salty, bitter or umami taste stimuli.
The effects were abolished when the experiments were repeated using knockout mice lacking the CB1 cannabinoid receptor. Additional studies revealed that the CB1 receptor and the T1R3 sweet taste receptor are present in the same taste cells.
Together, the experiments demonstrate that endocannabinoids selectively enhance sweet taste by acting on tongue taste cells and that the effect is mediated by the endocannabinoid receptor.
“Modulation of sweet taste responses may be an important component of the endocannabinoid system’s role in regulating feeding behavior,” said Margolskee. He parenthetically noted that the well-known “marijuana munchies” may depend at least in part on endocannabinoid stimulation of tongue taste cells.
Sweet taste receptors also are found in the intestine and pancreas, where they help regulate nutrient absorption, insulin secretion and energy metabolism. If endocannibinoids also modulate the responses of pancreatic and intestinal sweet receptors, the findings may open doors to the development of novel therapeutic compounds to combat metabolic diseases such as obesity and diabetes.
Also contributing to the study were Ryusuke Yoshida, Tadahiro Ohkuri, Masafumi Jyotaki, Toshiaki Yasuo, Nao Horio, Keiko Yasumatsu, Keisuke Sanematsu, Noriatsu Shigemura, Yuzo Ninomiya from Kyushu University and Tsuneyuki Yamamoto from Nagasaki International University.
The research was funded by grants from the Japan Society for the Promotion of Science and the National Institute on Deafness and Other Communication Disorders, National Institutes of Health.
The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication.
Media Contact
More Information:
http://www.monell.orgAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Future AR/VR controllers could be the palm of your hand
Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…
‘Game changer’ in lithium extraction
Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…
The blue-green sustainable proteins of seaweed
… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…