Evolution of staph 'superbug' traced between humans and food animals

Paul Keim, Regents’ professor and director of NAU’s Center for Microbial Genetics and Genomics, and Lance Price, NAU faculty member and director of the Center for Food Microbiology and Environmental Health at the Translational Genomics Research Institute, collaborated with scientists at 20 institutions around the world on the study published today in the online journal mBio.

The TGen-led research utilized whole genome sequencing to study 89 genomes from humans and animals — including turkeys, chickens and pigs — with samples from 19 countries on four continents.

The research focused on methicillin-resistant Staphylococcus aureus CC398, also known as pig MRSA or livestock-associated MRSA because it most often infects people with direct exposure to swine or other food animals. It is likely that MRSA CC398 started as an antibiotic-susceptible strain in humans before it jumped to food animals.

After transferring to food animals, MRSA CC398 became resistant to two important antibiotics, tetracycline and methicillin, which are used for treating staph infections. The resistance likely is a result of the routine antibiotic use that characterizes modern food-animal production. The animals commonly are given antibiotics to prevent infection and promote growth.

Keim, who also serves as director of TGen’s Pathogenic Genomics Division, said the study describes evolution in action. “The most powerful force in evolution is selection. And in this case, humans have supplied a strong force through the excessive use of antibiotic drugs in farm animal production. It is that inappropriate use of antibiotics that is now coming back to haunt us.”

Price, the study’s lead author, said the research was “like watching the birth of a superbug—it is simultaneously fascinating and disconcerting.” He said that while this strain of MRSA was discovered less than a decade ago it appears to be spreading very quickly.

“Our findings underscore the potential public health risks of widespread antibiotic use in food animal production,” Price said. “Staph thrives in crowded and unsanitary conditions. Add antibiotics to that environment and you’re going to create a public health problem.”

CONTACTS:

Cynthia Brown
NAU Office of Public Affairs
928-523-0611
cynthia.brown@nau.edu
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Media Contact

Cynthia Brown EurekAlert!

More Information:

http://www.nau.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of multiferroic heterostructures enabling energy-efficient MRAM with giant magnetoelectric effect.

Magnetic Memory Unlocked with Energy-Efficient MRAM

Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices. Stepping up the Memory Game: Overcoming the Limitations of Traditional RAM Osaka, Japan –…

Framework for automating RBAC compliance checks using process mining and policy validation tools.

Next-Level System Security: Smarter Access Control for Organizations

Cutting-Edge Framework for Enhancing System Security Researchers at the University of Electro-Communications have developed a groundbreaking framework for improving system security by analyzing business process logs. This framework focuses on…

Deep-sea sediment core highlighting microbial carbonate formation at methane seeps.

How Microbial Life Shapes Lime Formation in the Deep Ocean

Microorganisms are everywhere and have been influencing the Earth’s environment for over 3.5 billion years. Researchers from Germany, Austria and Taiwan have now deciphered the role they play in the…