Fatty Acids Involved in Python Heart Growth Could Help Diseased Hearts

Growth of the human heart can be beneficial when resulting from exercise – a type of growth known as physiological cardiac hypertrophy – but damaging when triggered by disease – growth known as pathological hypertrophy. The new research shows a potential avenue by which to make the unhealthy heart growth more like the healthy version.

“We may later be able to turn the tables, in a sense, in the processes involved in pathological hypertrophy by administering a combination of fatty acids that occur in very high concentrations in the blood of digesting pythons,” said Dr. Stephen Secor, associate professor of biological sciences at UA and one of the paper’s co-authors. “This could trigger, perhaps, something more akin to the physiological form of hypertrophy.”

The research, conducted in collaboration with multiple researchers at the University of Colorado working in the lab of Dr. Leslie Leinwand, identified three fatty acids, myristic acid, palmitic acid and palmitoleic acid, for their roles in the snakes’ healthy heart growths following a meal.

Researchers took these fatty acids from feasting pythons and infused them into fasting pythons. Afterward, those fasting pythons underwent heart-rate growths similar to that of the feasting pythons. In a similar fashion, the researchers were able to induce comparable heart-rate growths in rats, indicating that the fatty acids have a similar effect on the mammalian heart.

The paper, whose lead author was Dr. Cecilia Riquelme of the University of Colorado, also showed that the pythons’ heart growth was a result of the individual heart cells growing in size, rather than multiplying in number.

By studying gene expression in the python hearts – which genes are turned on following feasting – the research, Secor said, shows that the changes the pythons’ hearts undergo is more like the positive changes seen in a marathon runner rather than the types of changes seen in a diseased, or genetically altered, heart.

“Cyclists, marathon runners, rowers, swimmers, they tend to have larger hearts,” Secor said. “It’s the heart working harder to move blood through it. The term is ‘volume overload,’ in reference to more blood being pumped to tissues. In response, the heart’s chambers get larger, and more blood is pushed out with every contraction, resulting in increased cardiac performance.”

However, the time-frame of this increased heart performance of a python blows away even the most physically-fit distance runner, Secor said.

“Instead of experiencing elevated cardiac performance for several hours with running, the Burmese python is maintaining heightened cardiac output for five to six days, non-stop, while digesting their large meal.”

Another interesting finding of the research, Secor said, is even with the increased volume of triglycerides circulating in the snakes after feeding, those lipids are not remaining within the snakes’ hearts or vascular systems after the completion of digestion.

“The python hearts are using the circulating lipids to fuel the increase in performance.”

Traditionally, mice have been the preferred animal model used to study the genetic heart disease known as hypertrophic cardiomyopathy, characterized by heart growth and contractile dysfunction. However, the snakes’ unusual physiological responses render them more insightful models, in some cases, Secor said.

Pythons are infrequent feeders, sometimes eating only once or twice a year in the wild. When they do eat, they undergo extreme physiologic and metabolic changes that include increases in the size of the heart, along with the liver, pancreas, small intestine and kidney. Three days after a feeding, a python’s heart mass can increase as much as 40 percent, before reverting to its pre-meal size once digestion is completed, Secor said.

Media Contact

Chris Bryant EurekAlert!

More Information:

http://www.ua.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Novel catalyst for charge separation in photocatalytic water splitting

A research team led by Prof. JIANG Hailong, Prof. LUO Yi, and Prof. JIANG Jun from the University of Science and Technology of China (USTC) discovered a metal-organic framework (MOF)…

Finding a missing piece for neurodegenerative disease research

Research led by the University of Michigan has provided compelling  evidence that could solve a fundamental mystery in the makeup of fibrils that play a role in Alzheimer’s, Parkinson’s and…

BESSY II: New procedure for better thermoplastics

Thermoplastic blends, produced by a new process, have better resilience. Now, experiments at the IRIS beamline show, why: nanocrystalline layers increase their performance. Bio-based thermoplastics are produced from renewable organic…