Finding cortisone alternatives with fewer side effects

Prof. Henriette Uhlenhaut im Labor

A. Heddergott / TUM
Frei für Berichterstattung über die TU München unter Nennung des Copyrights

Many people use cortisone of a regular basis. It is used for treating rheumatism, asthma, multiple sclerosis, or even COVID-19. Steroidal medication such as cortisone is highly effective but also possesses severe side effects. Henriette Uhlenhaut, professor at Technical University of Munich (TUM), and her team are examining the beneficial effects of cortisone in order to lay the groundwork for the development of similar drugs with fewer side effects.

A group of scientists around Henriette Uhlenhaut, Professor for Metabolic Programming at TUM School of Life Sciences in Freising-Weihenstephan and researcher in the field of Molecular Endocrinology at Helmholtz Zentrum München is working with so-called glucocorticoids. These are steroidal hormones such as cortisone, which are released by the adrenal glands every day before waking up or whenever a person is subjected to stress. These steroids are bound to their glucocorticoid receptor and control not only our body’s immune reaction but also our sugar and fat metabolism.

As glucocorticoid receptors are so efficient at disabling immune reactions, synthetic steroid medication is among the most prescribed drugs overall and it has been for decades.

The goal: Finding molecules with anti-inflammatory effects

“Unfortunately, this useful property leads to severe side effects as one hormone or drug causes different effects in other non-immune cells,” explained the professor. Among these effects are the reduction of muscle mass or the deposition of fat.

“We still don’t fully understand the effects of steroid compounds,” said Uhlenhaut. With her team, she wants to discover the molecular mechanisms that steroids such as cortisone utilize to stop inflammatory reactions.

As soon as researchers know how cortisone works, so how it mutes inflammation genes in immune system cells, they can begin looking for molecules that possess the same anti-inflammatory properties as cortisone, but with fewer side effects.

Common theory refuted

Until recently, scientists believed that the steroids‘ anti-inflammatory effect was based on protein-to-protein interaction. It was assumed that the glucocorticoid receptor – in other words, the protein that binds these drugs or hormones – would connect to other inflammation inducing proteins without any DNA contact.

Using a new preclinical model, the team of researchers could now demonstrate that DNA binding is required for these drugs to have an effect; for years, scientists had assumed that this was not the case. Without the glucocorticoid receptor (the protein that binds these drugs or hormones) enabling DNA binding to chromosomes, chromatin or genes, there is no biological effect.

A milestone for drug development

“Now we know that DNA binding plays a major role, yet we have not found a way to separate side effects from the desired effects,” explained Prof. Uhlenhaut. Regarding COVID-19, researchers do not have a clear answer either as to why these kinds of treatments are successful. Further research in this area is required.

Until now, various approaches focused on protein-to-protein contact, which might explain why these have not been successful. As this basic approach can now be discarded, further research regarding drug development of cortisone alternatives can now focus on the DNA.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Henriette Uhlenhaut
Chair for Metabolic Programming
Technical University of Munich
TUM School of Life Sciences
ZIEL – Institute for Food & Health
Tel.: +49 (0) 8161 71 4322
henriette.uhlenhaut(at)tum.de

Originalpublikation:

Laura Escoter-Torres, Franziska Greulich, Fabiana Quagliarini, Michael Wierer, Nina Henriette Uhlenhaut: Anti-inflammatory functions of the glucocorticoid receptor require DNA binding
Nucleic Acids Research, July 3, 2020, https://doi.org/10.1093/nar/gkaa565

Weitere Informationen:

https://mediatum.ub.tum.de/1559845 (high resolution images)
https://www.tum.de/nc/en/about-tum/news/press-releases/details/36214/ (press release)

Media Contact

Pressestelle Corporate Communications Center
Technische Universität München

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Scientists transform blood into regenerative materials

… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…

A new experimental infection model in flies

…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…

Material developed with novel stretching properties

KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…