Self-healing polymer “starfish” prolong lifetime of automotive oils
Polymers are often added to automotive oils to control important physical properties such as viscosity but mechanical and thermal stress can break the polymers decreasing the efficiency and how they affect the oils properties. The research team, led by Professor David Haddleton, of the University of Warwick have now designed a self-healing, star-shaped polymer for use as a viscosity modifier.
The methacrylate polymer has vulnerable long arms which be broken off if stressed reducing performance. The research team found they could add a particular chemical combination to the polymer’s backbone which, almost like a starfish, which allow broken arms to reform via a “Diels Alder cycloaddition reaction” in a self healing reaction.
The research team now plan to 'optimise the chemistry before passing it on to our industrial collaborators, Lubrizol, for development in automotive lubricant applications,' says Professor Haddleton.
The research paper “Self-healing polymers prepared via living radical polymerisation” by
Jay A. Syrett, Giuseppe Mantovani, William R. S. Barton, David Price and David M. Haddleton, has just been published in Polymer Chemistry. DOI: 10.1039/b9py00316a Journal at:
http://www.rsc.org/Publishing/Journals/PY/index.asp
The RSC story with graphic at
http://www.rsc.org/Publishing/ChemScience/Volume/2010/02/Self-healing_polymer.asp
For further information please contact:
Professor Dave Haddleton
Department of Chemistry
University of Warwick
D.M.Haddleton@warwick.ac.uk
024 76523256
Peter Dunn, Head of Communications,
University of Warwick, 024 76 523708 or
07767 655860 email: p.j.dunn@warwick.ac.uk
Media Contact
More Information:
http://www.warwick.ac.ukAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Scientists transform blood into regenerative materials
… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…
A new experimental infection model in flies
…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…
Material developed with novel stretching properties
KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…