In unity towards complex structures

Filamentous cyanobacteria form characteristic patterns at the edges of an illuminated shape, although they are only able move forward and backward on their own.
© MPI-DS

When active filaments are exposed to localized illumination, they accumulate into stable structures along the boundaries of the illuminated area. Based on this fact, researchers at the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) developed a model that can be used to simulate the self-organization of thread-like living matter. This model provides important insights for potential technical applications in the formation of structures.

Filamentous cyanobacteria aggregate in areas with favorable light conditions and use the light energy for photosynthesis. Typically, these microorganisms form long filaments consisting of many cells. However, the thread-like structures can only move forward or backward – when leaving the illuminated area, they reverse their movement and thus remain in the light. Scientists at MPI-DS have investigated the resulting organizational structures. It was found that only the mutual interaction of several filaments causes the cyanobacteria to align themselves along the inner edge of the illuminated surface, thereby forming stable structures.

To do this, the researchers prepared and illuminated several cultures of cyanobacteria in Petri dishes. Using slides, they created different light patterns and subsequently observed the self-organization of the bacteria. With a circular light pattern, the bacteria mainly gathered at the edge of the illuminated area. Likewise, when the illuminated area was triangular, trapezoidal or otherwise shaped, characteristic patterns of filaments near the edge of the light emerged. “The remarkable thing is that the bacteria also arrange themselves along complex structures and curves, although they can only move back and forth,” says Stefan Karpitschka, group leader at MPI-DS and professor at the University of Konstanz. ‘This is a typical example of emergence – a characteristic overall structure arises independently at a higher level from the individual behavior of a single filament,’ he continues.

The insights gained from the scientists’ experiments and the resulting model can also be applied to living matter with comparable morphology. “The model does not include any specific details regarding the biology of the bacteria,” says Leila Abbaspour, joint first author of the study together with Maximilian Kurjahn. “This collective effect can thus also be observed in similar systems and enable active filaments to structure themselves according to sensory cues from their environment despite one-dimensional motility,” Kurjahn continues.

The results of this study therefore provide important insights that may be used in the design of so-called smart textiles or materials, for example. These novel structures and tissues are also based on the arrangement of individual fibers and active filaments. Such mechanisms of self-assembly may thus enable the development of new innovative materials.

Wissenschaftliche Ansprechpartner:

Prof. Stefan Karpitschka, stefan.karpitschka@uni-konstanz.de

Originalpublikation:

https://www.nature.com/articles/s41467-024-52936-9

Weitere Informationen:

https://www.ds.mpg.de/4073248/241112_cyanos?c=148862

Media Contact

Dr. Manuel Maidorn Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Custom Print Heads for 3D Printing

Achieving Individual Functional Integration. Wire or Fiber Encapsulating Additive Manufacturing (WEAM/FEAM) could significantly simplify the industrial production of components that require the integration of complex yet compact wiring, sensors, actuators,…

Emission and odor optimization in plastics and recyclates

The odor of recycled plastics is a major challenge for their recycling and requires customized solutions. Recyclates can have undesirable odors that come from various sources, such as microbiological degradation…

How Immune Cells “Sniff Out” Pathogens

Immune cells are capable of detecting infections just like a sniffer dog, using special sensors known as Toll-like receptors, or TLRs for short. But what signals activate TLRs, and what…