Inflammation 'on switch' also serves as 'off switch'

Scientists previously understood that the protein called TAB2 activates inflammation, an important biological process that stimulates wound-healing and prevents invasion of harmful organisms. But scientists considered TAB2 nonessential to the process due to the redundant function of a cousin protein, called TAB3, which has no trouble serving as an “on switch” to activate the inflammation process in TAB2’s absence.

In a study published in the Jan. 22 edition of the Journal of Biological Chemistry, the NC State researchers show that underestimating TAB2 can be dangerous. Rather than merely serving as an “on switch,” TAB2 also serves as an “off switch” that turns off the inflammation process. When TAB2 is absent or knocked out in cell cultures, the inflammation process continues unabated.

Too much inflammation can be a really bad thing. It is associated with human diseases including certain cancers, inflammatory bowel syndrome and psoriasis.

Knowing more about the regulatory mechanisms in cells may one day lead to drugs that can target excessive inflammation, say NC State’s Dr. Jun Ninomiya-Tsuji, associate professor of environmental and molecular toxicology, and her graduate student, Peter Broglie, the lead authors of the paper describing the study.

In the study, Ninomiya-Tsuji and Broglie show that cells lacking TAB2 had a prolonged inflammation response. Normally, TAB2 can be counted on to bring a protein called TAK1 close to tumor necrosis factor, or TNF, a circulating molecule that is a normal component of the immune system. Bringing TAK1 close to TNF activates TAK1, thereby starting the inflammatory response.

In normal systems, this inflammatory response would be quickly regulated to prevent too much inflammation. This is done by a regulating molecule called PP6, which deactivates TAK1, and, therefore, the inflammation process. When TAB2 was absent or knocked out, however, PP6 did not shut down TAK1. The NC State scientists infer, then, that TAB2 has a heretofore unknown function – it brings TAK1 close enough to PP6 to halt the inflammation process.

The NC State scientists were so surprised by the finding that, Broglie says, “Dr. Ninomiya-Tsuji made me replicate the study three times.”

The study was funded by a grant to Ninomiya-Tsuji from the National Institutes of Health. Co-authors of the paper included scientists from the University of Virginia and two Japanese universities – Nagoya University and Osaka University.

– kulikowski –

Note: An abstract of the paper follows.

“A TAK1 kinase adaptor, TAB2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in TNF signaling pathway”

Authors: Peter Broglie and Jun Ninomiya-Tsuji, North Carolina State University; Kunihiro Matsumoto, Nagoya University; Shizuo Akira, Osaka University; David L. Brautigan, University of Virginia

Published: Jan. 22, 2010, in Journal of Biological Chemistry

Abstract: TAK1 kinase is an indispensable signaling intermediate in TNF, IL-1, and Toll-like receptor signaling pathways. TAK1 binding protein 2 (TAB2) and its closely related protein, TAB3, are binding partners of TAK1, and have previously been identified as adaptors of TAK1 that recruit TAK1 to a TNF receptor signaling complex. TAB2 and TAB3 redundantly mediate activation of TAK1. In this study, we investigated the role of TAB2 by analyzing fibroblasts having targeted deletion of tab2 gene. In TAB2-deficient fibroblasts, TAK1 was associated with TAB3 and activated following TNF stimulation. However, TAB2-deficient fibroblasts displayed a significantly prolonged activation of TAK1 compared with wild type control cells. This suggests that TAB2 mediates deactivation of TAK1. We found that a TAK1 negative regulator, protein phosphatase 6 (PP6), was recruited to TAK1 complex in wild type but not in TAB2-deficient fibroblasts. Furthermore, we demonstrated that both PP6 and TAB2 interacted with the polyubiquitin chains and this interaction mediated the assembly with TAK1. Our results indicate that TAB2 not only activates TAK1 but also plays an essential role in the deactivation of TAK1 by recruiting PP6 through a polyubiquitin chain-dependent mechanism.

Media Contact

Mick Kulikowski EurekAlert!

More Information:

http://www.ncsu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

How marine worms regenerate lost body parts

The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…

Nano-scale molecular detective

New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…

Novel CAR T-cell therapy

… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….