Investigating the Development of Mechanosensitivity
By measuring electrical impulses in the sensory neurons of mice, the neurobiologists and pain researchers Dr. Stefan G. Lechner and Professor Gary Lewin were able to directly elucidate, for the first time, the emergence of mechanosensitivity. At the same time they were able to show that neurons develop their sensitivity to touch and pain during different developmental phases but always coincidentally with the growth of the neuronal pathways. (EMBO Journal, 2009, doi:10.1038/emboj.2009.73).*
The sensory neurons, which are sensitive to touch and pain, are located in the dorsal root ganglia between the intervertebral discs. The neurons receive the stimulus and convert it into electrical signals that are conveyed to the brain.
Signal transduction has been investigated very thoroughly, which has led to the development of drugs that block the transduction of pain signals to the brain. Very little, however, is known about how stimulus sensitivity actually emerges.
Using the patch-clamp technique in isolated cells of mouse embryos, the MDC researchers succeeded in measuring tiny electrical currents in the cell membranes after a mechanosensory stimulus.
“These measurements are extremely difficult,” Dr. Lechner explained, “which is why only very few laboratories in the world are specialized in this area.”
The researchers in Berlin-Buch were able to show that the sensory neurons in the mouse embryo have already fully developed their mechanosensitivity competence on embryonic day 13. That corresponds to about the end of the sixth month of pregnancy in humans.
For this development the neurons do not require any nerve growth factor, which is why the researchers suspect that this process is driven by a genetic program. In contrast, the competence to sense pain in the sensory neurons can only develop with the aid of nerve growth factor (NGF). It takes place at a later stage in embryonic development and even after birth.
*Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development
Stefan G Lechner, Henning Frenzel1, Rui Wang1 and Gary R Lewin*
Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
*Corresponding author
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de
Media Contact
More Information:
http://www.mdc-berlin.de/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Skull bone marrow expands throughout life
…and remains healthy during aging. Blood vessels and stromal cells in the bone marrow create an ideal environment for hematopoietic stem cells to continuously produce all blood cells. During aging,…
Future AR/VR controllers could be the palm of your hand
Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…
‘Game changer’ in lithium extraction
Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…