Investigating the Development of Mechanosensitivity
By measuring electrical impulses in the sensory neurons of mice, the neurobiologists and pain researchers Dr. Stefan G. Lechner and Professor Gary Lewin were able to directly elucidate, for the first time, the emergence of mechanosensitivity. At the same time they were able to show that neurons develop their sensitivity to touch and pain during different developmental phases but always coincidentally with the growth of the neuronal pathways. (EMBO Journal, 2009, doi:10.1038/emboj.2009.73).*
The sensory neurons, which are sensitive to touch and pain, are located in the dorsal root ganglia between the intervertebral discs. The neurons receive the stimulus and convert it into electrical signals that are conveyed to the brain.
Signal transduction has been investigated very thoroughly, which has led to the development of drugs that block the transduction of pain signals to the brain. Very little, however, is known about how stimulus sensitivity actually emerges.
Using the patch-clamp technique in isolated cells of mouse embryos, the MDC researchers succeeded in measuring tiny electrical currents in the cell membranes after a mechanosensory stimulus.
“These measurements are extremely difficult,” Dr. Lechner explained, “which is why only very few laboratories in the world are specialized in this area.”
The researchers in Berlin-Buch were able to show that the sensory neurons in the mouse embryo have already fully developed their mechanosensitivity competence on embryonic day 13. That corresponds to about the end of the sixth month of pregnancy in humans.
For this development the neurons do not require any nerve growth factor, which is why the researchers suspect that this process is driven by a genetic program. In contrast, the competence to sense pain in the sensory neurons can only develop with the aid of nerve growth factor (NGF). It takes place at a later stage in embryonic development and even after birth.
*Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development
Stefan G Lechner, Henning Frenzel1, Rui Wang1 and Gary R Lewin*
Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
*Corresponding author
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de
Media Contact
More Information:
http://www.mdc-berlin.de/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…