Location matters in the lowland Amazon
“Our findings tell us that lowland Amazon forests are far more geographically sorted than we once thought,” Asner explained. “It is not simply a swath of green that occurs with everything strewn randomly. Place does matter, even if it all appears to be flat and green monotony at first glance.”
The Amazonian forest occupies more than five million square kilometers, stretching from the Atlantic coast to the foothills of the Andes. Thousands of tree and other plant species are found throughout this area, each synthesizing a complex portfolio of chemicals to accomplish a variety of functions from capturing sunlight to fighting off herbivores, to attracting pollinators, not to mention the chemical processes involved in adapting to climate change.
The lowland forests of the Amazon rest on a hidden, underlying mosaic of geologic and hydrologic variation. It turns out that this mosaic affects the diversity of chemical functions that forest plants undertake, because the varying topography affects water, nutrients, and other plant resources. Understanding how the chemical activity of plants varies geographically is crucial to understanding the way an ecosystem functions on a large scale.
To figure it out, Asner and his team took a high-tech approach based on data collected from their Carnegie Airborne Observatory, or CAO, and developed the first high-resolution maps of the forest's canopy chemistry. A novel combination of instruments onboard the CAO, including a high-fidelity imaging spectrometer and a laser scanner, was used to map four huge forested landscapes along two Amazonian river systems. The instruments enabled the team to capture previously hidden chemical fingerprints of rainforest canopy species.
“This is the first time that so many chemicals have been measured and mapped in any forest ecosystem on Earth,” Asner said. “No one has done the mapping we have achieved here, which enabled a discovery that the lowland Amazon is anything but monotonous or similar everywhere.”
Their results reveal that the pattern of chemical properties in canopy trees changes along the paths of the two rivers–the Madre de Dios River and the Tambopata River–as well as across the landscape's topography on a 'microscale', with very small changes in elevation making all the difference to the plants living there. CAO's laser-guided spectroscopic mapping is unsurpassed in its ability to connect biological and geological processes. Studies of this kind help scientists to better understand the Earth's tremendous diversity and its geographic patterning, both of which are required to understand evolution or the future of species in a changing world.
“Looking at the lowland Amazon with this kind of detail, you can see back in time, from the way the topography was shaped millions of years ago, which still affects soils and mineral availability today, to the way that different species evolved to take advantage of this great variety of subtly changing conditions,” Asner explained. “And we can peer into the future and see how quickly human activity is changing the kaleidoscope of diversity that has been uniquely shaped over millions of years.”
###
This study was funded by the John D. and Catherine T. MacArthur Foundation.
The Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, Margaret A. Cargill Foundation, John D. and Catherine T. MacArthur Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W.M. Keck Foundation, M.A.N. Baker and G.L.Baker Jr., and W.R. Hearst III.
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative vortex beam technology
…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…
Tiny dancers: Scientists synchronise bacterial motion
Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…
Primary investigation on ram-rotor detonation engine
Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…