Microbiologists Find Defense Molecule That Senses Respiratory Viruses

The finding, published online Sunday, Aug. 23, by the journal Nature Immunology, could lead to new therapies for human respiratory syncytial virus (RSV) and influenza A (commonly known as flu), both of which are serious threats to people with weak immune systems, particularly infants up to age 1 and senior citizens age 65 and older.

“This molecule could be used to boost host immune defenses and stimulate vaccine efficacy against RSV and influenza A, especially among high-risk individuals,” said senior author Santanu Bose, Ph.D., assistant professor of microbiology and immunology. Dr. Bose’s laboratory team includes graduate student Ahmed Sabbath and research scientists Te-Hung Chang and Rosalinda Harnack.

Related to survival

The cellular molecule, called NOD2, recognizes these viruses and can instruct cells to defend against them. Researchers found that mice lacking the sensor survive for only 10 days after infection, compared with up to eight weeks for normal animals.

Identifying this sensor and understanding its key role could result in therapies that activate the NOD2 gene during or prior to infection, leading to enhanced protective immunity. The NOD2 sensor also has the potential to recognize other viruses, such as West Nile virus, yellow fever, Ebola and rabies.

Dr. Bose has multiple grants from the National Institutes of Health and the American Lung Association to continue this line of research. “In the future, studies will gear up to find out if NOD2 is a susceptibility gene for respiratory viruses, since frequent mutation of this gene has been found in humans,” he said.

Potential clinical use

Once the study is designed and clinical partner affiliations are reached, the Bose team hopes to draw blood from severely infected, moderately infected and non-infected patients to test for levels of the sensor, which would allow predictions as to how individuals might respond to respiratory viral infections.

“This is a major breakthrough in understanding respiratory virus behavior and innate immune antiviral factors, and provides the basis for innovative therapies to improve host responses to infectious diseases,” said Joel Baseman, Ph.D., professor and chairman of microbiology and immunology at the Health Science Center.

Dr. Baseman said microbiology and immunology faculty members in the university’s Graduate School of Biomedical Sciences are doing fundamental and translational research that is the basis for the establishment of an airway disease research and vaccine center. The group includes Dr. Bose’s co-authors on the NOD2 paper, Peter Dube, Ph.D., and Yan Xiang, Ph.D.

About The University of Texas Health Science Center at San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 26,400 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields.

Media Contact

Newswise Science News

More Information:

http://www.uthscsa.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Future AR/VR controllers could be the palm of your hand

Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…

‘Game changer’ in lithium extraction

Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…

The blue-green sustainable proteins of seaweed

… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…