More Selective Elimination of Leukemia Stem Cells and Blood Stem Cells

Acute myeloid leukemia (AML) is an aggressive cancer of the blood-forming system. It affects the hematopoietic stem cells, or blood stem cells, of various white blood cells and of the red blood cells and platelets. The leukemic stem cells propagate quickly, spread in the bone marrow and blood, and can attack other organs.

Patients are usually treated with intensive chemotherapy and sometimes radiotherapy. After that they require a transplant of hematopoietic stem cells from a healthy donor. There are serious side effects associated with the treatment and it is therefore unsuitable for many patients.

Selectively eliminating leukemic and hematopoietic stem cells

A team of scientists and physicians from the University of Zurich (UZH), the University Hospital Zurich (USZ) and ETH Zurich have now managed to eliminate the leukemic and hematopoietic stem cells more selectively in an animal model. Chemotherapy and radiotherapy not only destroy the cancerous and hematopoietic stem cells, but affect all dividing cells – i.e. practically all tissues.

“Compared to normal strategies, our method works very selectively, meaning that mature blood cells and other tissues are spared,” says study leader Markus Manz, professor of medicine at UZH and director of the Department of Medical Oncology and Hematology at USZ.

The researchers used the novel cell therapy called CAR-T. This therapy uses genetic modification to equip human immune cells with a receptor, thanks to which they can systematically dock onto only the leukemic stem cells and the healthy hematopoietic stem cells and destroy them. This creates space for the new donor cells to be transplanted.

To avoid that the genetically modified immune cells then also attack the hematopoietic stem cells from the donor, the CAR-T cells are deactivated after they have done their work and before the transplant.

This is done by using an antibody against a surface marker of the CAR-T cells. After the donor stem cell transplant, they take their place in the bone marrow and begin to rebuild the hematopoietic and immune system.

Clinical use of selective immune-mediated elimination planned

The results were achieved using cell cultures in the lab and in mice with human blood and cancer cells. But Markus Manz is confident that the treatment could also be effective in humans: “The principle works: It is possible to eliminate, with high precision, the leukemic and hematopoietic stem cells in a living organism.”

Researchers are currently testing whether the method is only possible with CAR-T cells or also with simpler constructs – such as T-cell-activating antibodies. As soon as the pre-clinical work is completed, Manz wants to test the new immunotherapy in a clinical study with humans.

“If our method also works with humans, it could replace chemotherapy with its serious side effects, which would be a great benefit for patients with acute myeloid leukemia or other hematopoietic stem cell diseases,” explains Manz.

Funding

The research was largely supported by the Clinical Research Priority Program (CRPP) “Immunocare”, the University Research Priority Program (URPP) “Translational Cancer Research” of the University of Zurich and other funding agencies.

Prof. Dr. med. Markus G. Manz
Department of Medical Oncology and Hematology
University Hospital Zurich
Phone: +41 44 255 38 99
E-mail: markus.manz@usz.ch

Renier Myburgh, Jonathan D. Kiefer, Norman F. Russkamp, Chiara F. Magnani, Nicolás Nuñez, Alexander Simonis, Surema Pfister, C. Matthias Wilk, Donal McHugh, Juliane Friemel, Antonia M. Müller, Burkhard Becher, Christian Münz, Maries van den Broek, Dario Neri, and Markus G. Manz. Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia. 1 May 2020. DOI: 10.1038/s41375-020-0818-9.

https://www.media.uzh.ch/en/Press-Releases/2020/Leukemia-therapy.html

Media Contact

Rita Ziegler Universität Zürich

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

How marine worms regenerate lost body parts

The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…

Nano-scale molecular detective

New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…

Novel CAR T-cell therapy

… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….