Mothers Determine the Fate of Hybrid Seeds in Plants
Scientists Uncover Vital Role of Maternal Small RNAs in Plant Breeding.
Plant breeders, aiming to develop resilient and high-quality crops, often cross plants from different species to transfer desirable traits. However, they frequently encounter a major obstacle: hybrid seed failure. This reproductive barrier often prevents closely related species from producing viable seeds. A new study from the Max Planck Institute of Molecular Plant Physiology offers insights into this challenge by identifying small RNA molecules as crucial players in this process. These findings could pave the way for more successful hybridization in the future.
When hybrid seeds fail to develop, the reason often lays in the endosperm – a tissue in plant seeds that provides nutrients to the growing embryo, much like the placenta nourishes mammalian embryos. Without proper development of the endosperm, the seeds cannot survive. A new study led by Prof. Dr. Claudia Köhler’s research group has made a key discovery in the Brassicaceae family, which includes mustard, broccoli, rapeseed, and other important crops. The study reveals a strong link between hybrid seed failure and a deficiency in maternal small RNAs. These tiny molecules are transferred from the maternal plant to the endosperm and control gene activity in the endosperm. When the gene expression in a seed is abnormal, seed development halts, ultimately leading to its death.
“Our findings suggest that the dosage of maternally provided small RNAs can determine whether a hybrid seed will grow or not,” said Dr. Katarzyna Dziasek, the study’s lead author. “By controlling the levels of these RNA molecules, we may be able to improve the survival of hybrid seeds and overcome the barriers that have long prevented successful breeding between different plant species.”
Interestingly, this mechanism extends beyond plants. A similar phenomenon, known as hybrid dysgenesis, occurs in fruit flies. In this case, small RNAs from the mother protect against genetic disorders that can occur if the father’s genetic material deviates too much. Thus, in both plants and animals, maternal small RNAs play a pivotal role in determining species compatibility in hybridization. Key questions remain about how these small RNAs are generated and transferred from the maternal plant to the endosperm, which are currently under investigation in Claudia Köhler’s lab at the Max Planck Institute of Molecular Plant Physiology.
As plant breeders continue to face the challenges of hybrid seed failure, this research provides a promising new avenue for enhancing the transfer of beneficial traits between species. By understanding the molecular mechanisms behind hybrid seed failure, breeders may be able to develop more resilient crops that can better withstand environmental stresses, improve yield, and maintain biodiversity.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Claudia Köhler
Director
Max Planck Institute of Molecular Plant Physiology
Tel. 0331 567-8102
koehler@mpimp-golm.mpg.de
Originalpublikation:
Katarzyna Dziasek, Juan Santos-González, Kai Wang, Yichun Qiu, Jiali Zhu, Diana Rigola, Koen Nijbroek, Claudia Köhler
Dosage sensitive maternal siRNAs determine hybridization success in Capsella
Nature plants, November 11, 2024, doi: https://www.nature.com/articles/s41477-024-01844-3
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
How Immune Cells “Sniff Out” Pathogens
Immune cells are capable of detecting infections just like a sniffer dog, using special sensors known as Toll-like receptors, or TLRs for short. But what signals activate TLRs, and what…
Custom Print Heads for 3D Printing
Achieving Individual Functional Integration. Wire or Fiber Encapsulating Additive Manufacturing (WEAM/FEAM) could significantly simplify the industrial production of components that require the integration of complex yet compact wiring, sensors, actuators,…
In unity towards complex structures
When active filaments are exposed to localized illumination, they accumulate into stable structures along the boundaries of the illuminated area. Based on this fact, researchers at the Max Planck Institute…