New catalyst developed for sustainable propylene production from biomass

A new catalyst can selectively reduce allyl alcohol, leading to a bio-based propylene.
Credit: Osaka Metropolitan University

Propylene production harnesses biodiesel waste byproduct.

Achieving carbon neutrality requires the effective use of renewable biomass. In the production of biodiesel, for instance, glycerol is generated as a major byproduct. Researchers at Osaka Metropolitan University have developed a new catalyst that efficiently converts a derivative of glycerol into bio-based propylene, contributing to sustainable chemical production.

Propylene is typically produced from petroleum and is widely used in the manufacture of plastics, such as automobile bumpers and food containers. The research team, led by Associate Professor Shin Takemoto and Professor Hiroyuki Matsuzaka from the Graduate School of Science, developed a catalyst that selectively breaks down the oxygen-carbon bond in allyl alcohol, a derivative of glycerol, to produce bio-based propylene.

The newly developed catalyst enables the selective reduction of allyl alcohol to propylene with high efficiency, using renewable energy sources such as hydrogen or electricity. The catalyst contains a special molecule known as a metalloligand, which is designed to facilitate the reversible binding of two metals within the catalyst. This feature enhances the reaction’s efficiency, provides high selectivity, and minimizes the formation of byproducts.

“Our research offers a sustainable alternative to conventional propylene production methods and can contribute to the development of an environmentally friendly chemical industry,” said Professor Takemoto. “We look forward to further advancing this technology and exploring its broader applications.”

The findings were published in Chemical Communications.

 

About OMU

Established in Osaka as one of the largest public universities in Japan, Osaka Metropolitan University is committed to shaping the future of society through “Convergence of Knowledge” and the promotion of world-class research. For more research news, visit https://www.omu.ac.jp/en/ and follow us on social media: X, Facebook, Instagram, LinkedIn.

Journal: Chemical Communications
DOI: 10.1039/D4CC01711K
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Bimetallic Ru–Ir/Rh complexes for catalytic allyl alcohol reduction to propylene
Article Publication Date: 6-Aug-2024
COI Statement: There are no conflicts to declare.

Media Contact

Yung-Hsiang Kao
Osaka Metropolitan University
koho-ipro@ml.omu.ac.jp
Office: +81-6-6605-3452
 @OsakaMetUniv_en

Media Contact

Yung-Hsiang Kao
Osaka Metropolitan University

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…