New hope in the fight against Hepatitis C

Dr. Kumar Nagarathinam, lead author of the pioneering study, presents the innovative vaccine design targeting the Hepatitis C virus (HCV). Conducted at the Institute of Virology at the University of Lübeck under the guidance of Prof. Dr. Thomas Krey, this research was published in the renowned journal Science Advances and represents a significant milestone in vaccine development.
(c) Picture was taken by Dinesh Thiyagaraj

Broadly effective innovative vaccine design.

Globally, approximately 58 million people are chronically infected with HCV, resulting in 290,000 annual deaths due to complications such as liver cirrhosis and liver cancer. Although modern antiviral treatments achieve high cure rates, the global elimination of HCV remains a difficult goal due to inadequate early detection and limited treatment options. Indeed, HCV has been identified as one of the globally prioritized endemic pathogens for vaccine research and development in the World Health Organization’s “Immunization Agenda 2030.” It is among the pathogens for which there is an urgent need for vaccines, as they cause a significant disease burden. An effective vaccine could fill this gap and limit the spread of the virus.

The Innovative Approach of the Research

Our research lays the foundation for a new generation of vaccines. We focus on overcoming the challenges posed by the viral diversity and immunological evasion of HCV,” explains Prof. Krey. The team employed novel computational protein designs to mimic specific regions of the viral glycoproteins E1 and E2, known as neutralization epitopes. These were transferred onto synthetic protein carriers and integrated into nanoparticles to elicit the most effective immune response possible. The study demonstrated that these epitope-focused immunogens in mouse models with a human antibody repertoire triggered a robust immune response. The produced antibodies were capable of successfully neutralizing multiple genetically diverse HCV strains.

Potential for Vaccine Development

The results of this study provide a promising approach to overcoming previous failures in developing an effective HCV vaccine. “This proof-of-concept approach not only brings us closer to an effective HCV vaccine but could also set new standards in vaccine development against this and other medically significant viruses,” says Dr. Kumar Nagarathinam, lead author of the study.

The study represents a significant milestone in vaccine research and could contribute to limiting the global spread of Hepatitis C in the long term. Future research aims to further enhance the efficacy of the immunogens. Additionally, the insights gained could be applied to other viruses that pose similar challenges for vaccine development.

Journal: Science Advances
DOI: 10.1126/sciadv.ado2600
Method of Research: Experimental study
Subject of Research: Animals
Article Title: Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies
Article Publication Date: 6-Dec-2024
COI Statement: none

Media Contact

Vivian Upmann
University of Lübeck
pressestelle@uni-luebeck.de
Office: 045131011072

Expert Contact

Thomas Krey
University of Lübeck
thomas.krey@uni-luebeck.de

www.uni-luebeck.de

Media Contact

Vivian Upmann
University of Lübeck

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…