Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Fish and mammal teeth are not created equal. Sometime after the move from spineless to having a backbone, the family of genes that controls tissue mineralization evolved to produce mammalian tooth enamel, bones and dentine, but fish enameloid developed from different genes, according to Penn State researchers.
“We also suggest that mammalian enamel is distinct from fish enameloid,” the researchers reported in this weeks online edition of the Proceedings of the National Academy of Sc
Researchers have found a family of molecules that play a key role in the formation of synapses, the junctions that link brain cells, called neurons, to each other. The molecules initiate the development of these connections, forming the circuitry of the mammalian nervous system.
Scientists from Harvard University and Washington University in St. Louis describe the findings in the July 23 issue of the journal Cell.
“This is very basic work, far from any clinical applications at
Research led by Anna Marie Pyle, professor of molecular biophysics and biochemistry at Yale University reveals how a protein from Hepatitis C (HCV) unwinds RNA, potentially allowing it to be copied.
The work published in the journal Nature focuses on an enzyme, helicase NS3, that unwinds the RNA virus for replication inside cells. NS3 is one member of an extensive family of helicases and is used as a model for studying unwinding activities of motor proteins.
Their finding
Johns Hopkins researchers report that once a growing nerve “tastes” a certain protein, it loses its “appetite” for other proteins and follows the tasty crumbs to reach its final destination. The finding in mice, reported in the July 23 issue of Cell, appears to help explain how nerves connect to their targets and stop growing once there, a process important for the normal development of mouse and man.
During prenatal development, a nerve connects to its proper targets in part by obeying pr
US National Academy of Sciences member and Stanford Professor Winslow R. Briggs will speak at the American Society of Plant Biologists (ASPB) annual meeting July 24, 2004 in Orlando, Florida about findings in his studies of how plants sense the direction of light.
Most casual observers have likely noticed that seedlings on a windowsill will grow toward the light. This phenomenon, known as phototropism, is a manifestation of a sensitive system plants have for detecting light. This light sens
At his presentation at the annual meeting of the American Society of Plant Biologists (ASPB) here July 24, 2004, Arizona State University Professor Charles J. Arntzen explained the newest advances in his research on plant-producing vaccines.
The development and introduction of new vaccines to improve global public health faces many challenges, Arntzen noted. The vaccines must address the need for lower costs, oral-administration (needle-free), heat stability, and they must include c