Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Fossil Record Accurately Reflects Recent Flowering of Marine Biodiversity

The apparent increase in marine biodiversity over the past 50 million to 100 million years is real and not just a false reading produced by the inconsistencies of the fossil record, says a team of paleontologists led by the University of Chicago’s David Jablonski. This finding, published in the May 16 issue of the journal Science, may help scientists place the future of global biodiversity in its proper context. “If you want to understand what’s going to come in the future you need

Assumptions about what holds molecular complexes together have been based on faulty measures

As scientists create molecular complexes to perform increasingly minute operations — such as molecular level switches or memory devices — it is critical that the association forces that hold the molecular components together be accurately understood.

But measurements of association constants are often not accurate, according to an article by Virginia Tech Ph.D. student Jason Jones and chemistry professor Harry W. Gibson, published in May 15, 2003 online issue of the Journal of the America

Critical early-defense trigger in plants found

The gene for an enzyme that is key to natural disease resistance in plants has been discovered by biologists at the Boyce Thompson Institute for Plant Research (BTI) and at Cornell University. The researchers say that by enhancing the activity of the enzyme they might be able to boost natural disease resistance in crop plants without resorting to pesticides or the introduction of non-plant genes.

The research, reported in the latest (May 16) issue of the journal Cell , describes the discov

Bucket with two ears catches DNA

Dutch PhD student Cathelijne Kloks has discovered that the so-called Cold Shock domain of the human YB-1 protein looks like a bucket with two extra ears. These ears lead the DNA to the binding site on the protein and keep it there.

Kloks investigated the structure and function of one of the three domains of the human protein YB-1. This protein plays an important role in the production of new proteins. The central domain, the so-called Cold Shock domain, ensures the binding of the protein to

Diamond layer makes steel rock hard

Dutch chemist Ivan Buijnsters from the University of Nijmegen has successfully produced a diamond layer on a steel substrate. This opens up the possibility of wear-resistant tools. The secret to this technique is an adhesive layer between the steel and the diamond layer.

Buijnsters made diamond layers by allowing methane gas diluted in hydrogen gas to dissociate on a hot wire just above the substrate. The carbon atoms present in the methane dropped onto the substrate and formed a thin layer

Gold nanoparticles and catalytic DNA produce colormetric lead sensor

Detecting the presence of hazardous lead paint could become as simple as pressing a piece of paper against a wall and noting a color change.

Scientists at the University of Illinois at Urbana-Champaign have developed a highly sensitive and selective biosensor that functions in much the same fashion as a strip of litmus paper. The researchers report their discovery in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web

Page
1 4,510 4,511 4,512 4,513 4,514 4,630