Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
The promise of the genomics revolution – the ability to compare important genes and proteins from many different organisms – is that such detailed knowledge will produce new scientific insights that will improve human quality of life. In work on a key human enzyme, PBGS (porphobilinogen synthase), the laboratory of Fox Chase Cancer Center scientist Eileen K. Jaffe, Ph.D., has characterized a rare mutation that results in an unprecedented rearrangement of the enzyme´s structure. The discovery provides
Since the time when humans first learned to record their thoughts in written form, codes have kept sensitive information from prying eyes. But conveying information through a code requires someone who can read it as well as write it. The same is true for one of nature´s methods for transmitting information that activates or silences a gene: the “histone code.”
First formally proposed in 2000 by C. David Allis, Ph.D., and his postdoctoral fellow Brian Strahl, Ph.D., the histone code is
Scientists have inactivated almost three-quarters of all genes in the genome of Arabidopsis thaliana, a species widely used in plant research. The feat, which results in the largest so-called “knockout” gene collection of a complex multi-cellular organism, now allows researchers to study the function of each of those genes individually or together.
The findings, published in the August 1 issue of the journal Science, mark an important milestone in the field of plant genomics. Follow
Finding will aid drug design to combat depression, stroke and diabetes. Scientists are a step closer to understanding how essential nutrients, vitamins and minerals are ferried into cells.
For the first time, a member of the Major Facilitator Superfamily (MFS) of transport proteins, found in almost every form of life, has been visualised by researchers from Imperial College London and the University of California, Los Angeles.
Reporting in Science today, the researchers reve
A signal that triggers half the stem cells in the developing brain to commit suicide at a stage where their survival will likely do more harm than good has been identified by researchers at the Medical College of Georgia and the University of Georgia.
Identifying the factors that result in the timely, massive cell suicide is important to understanding the developmental puzzle, the researchers say of the work featured on the cover of the Aug. 4 issue of the Journal of Cell Biology.
Introduction – Enzymology in 2003
Why the 90th anniversary of v = Vmax x [S] / (Km + [S]) is as important as the 50th anniversary of the double-helical structure of DNA. Enzymology is essential, to find out how nucleic acids fulfil their biological functions. Moreover, genome analysis will always, at some stage in the process, have to advance from sequence gazing to enzymology, since the objective of the analysis must be to identify the reactions mediated by the products of each open