Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

UT Southwestern scientist helps identify neurons in worms that control link between stress, eating

Scientists at UT Southwestern Medical Center at Dallas and the University of California, San Francisco have shown that feeding behavior in worms is controlled by neurons that detect adverse or stressful conditions.

The findings are published in the Oct. 31 issue of Nature.

The discovery of the gene that controls social feeding behavior in worms was made in 1998 by researchers at UCSF. The new findings build on the earlier research by identifying the nociceptive neurons – ne

Evolution: fish select for the survival of the fittest

An important breakthrough has been made in determining the forces responsible for the evolution of populations in nature. By studying wild populations of grayling (a close relative of salmon), Mikko Koskinen and Craig Primmer at the University of Helsinki and Thrond Haugen at the University of Oslo found that natural selection, a force suggested by Charles Darwin in `The Origin of Species`, was responsible for up-to 90% of grayling evolution.

In their study, published in Nature on October 24

New Tools For Getting To Know Our Own Microbiota

EU-funded project named `MICROBE DIAGNOSTICS` has developed new tools that enable more extensive and rapid analysis of our gut microbiota than has been possible earlier.
These new methods are based on the unique genetical codes each microbe contains. The project has developed 16 new testing devices, so called oligonucleotide probes. These probes are able to describe a more varied set of organisms that live in our microbiota than previously has been recognised by scientific methods. With these met

Transforming brain research with jellyfish genes and advances in microscopy

Researchers at Washington University School of Medicine in St. Louis are transplanting jellyfish genes into mice to watch how neural connections change in the brains of entire living animals. The development represents the merging of several technologies and enable researchers to watch changes inside living animals during normal development and during disease progression in a relatively non-invasive way.

“This work represents a new approach to studying the biology of whole, living animals,

Chemist shoots chemistry ’in the act’

A physical chemist at Washington University in St. Louis is combining powerful lasers with clever timing schemes to characterize how chemical reactions occur with very precise atomic and time resolution. Understanding the mechanisms and physics of a chemical reaction at the most fundamental level could provide valuable insights into new directions for the field of chemistry.

Richard A. Loomis, Ph.D., assistant professor of chemistry, is a physical chemist building on the femtochemistry adv

’Ping-Pong’ mechanism seen in gene-controlling enzyme

An enzyme that plays a pivotal role in controlling genes in yeast acts through a more versatile mechanism than was previously thought to be the case, according to a new study by researchers at The Wistar Institute.

Its mode of action is also distinct from that of other members of the vital enzyme family into which it falls, the scientists found. Because the human counterpart of the enzyme has been associated with certain forms of leukemia, this observation raises the possibility that

Page
1 4,606 4,607 4,608 4,609 4,610 4,668