Phosphate nutrition of plants through symbiosis with fungi

Tree-shaped arbuscules of an arbuscular mycorrhiza fungus in a root, stained with a fluorescent dye.
(c) Andreas Keymer

Phosphorus is one of the most important nutrients for plants. Among other functions, it is needed to create substances for the plant’s immune system, for the healthy development of seeds and for root growth. A team of researchers led by the Technical University of Munich (TUM) and the Chinese University of Hong Kong have now demonstrated how a root symbiosis with fungi is driven at the molecular level by the plant’s phosphate status.

Land plants absorb phosphate better when they collaborate with certain soil fungi. Arbuscular mycorrhiza (AM), a symbiosis with such fungi, is used by more than 80 percent of plants. The fungi penetrate the root cortex cells and form hyphal networks in the soil. These take up phosphate from the soil and transport it directly into the root, where it is released into the root cells via tree-shaped fungal structures called arbuscules.

Plants regulate the establishment of symbiosis

Prof. Caroline Gutjahr
Photo: U. Benz / TUM

“Interestingly, the plant can regulate the establishment of the symbiosis according to its physiological condition. The symbiosis is promoted at low plant phosphate status and is inhibited when the plant has sufficient phosphate, for example as a result of fertilizer use,” says Caroline Gutjahr, Professor for Plant Genetics at TUM. “This likely happens in order to conserve organic carbon, which the plant supplies to the fungus.” Although this phenomenon was first observed around 50 years ago, the molecular mechanism for inhibiting the arbuscular mycorrhiza at high phosphate status was unknown.

A protein called PHR is a key transcription factor in the process. Transcription factors are proteins that control the copying of DNA into mRNA, thus ensuring that finally the required quantity of a protein is formed. PHR activates genes that enable the plant to respond to a phosphate deficiency.

Experiments with rice – one of the most important agricultural crops

“We wanted to find out how the formation of arbuscular mycorrhiza is regulated depending on phosphate availability. Our hypothesis was that PHR might be responsible,” says Prof. Gutjahr. In addition to lab results with rice and the model legume Lotus japonicus, the researchers also conducted an experiment in soil from rice fields. They were able to show that PHR is needed to promote AM symbiosis when soil phosphate is low to ensure normal grain yields.

A key result of the study is that PHR not only regulates classical phosphate deficiency genes, but also an entire group of genes required for the establishment and function of AM. These include, for example, biosynthesis genes for the hormone strigolactone. This hormone is produced by the plant and released into the soil where it activates and attracts the fungus.

Potential for sustainable agriculture

AM symbiosis has enormous potential for application in sustainable agriculture by reducing the need for artificial fertilizers. “Our insights could be used to modify the phosphate sensitivity of plants through selective breeding or gene editing,” says Prof. Gutjahr.

The improved uptake of phosphate is not the only benefit of AM. It also promotes the absorption of other nutrients such as nitrogen, potassium and sulphate and improves plant resistance to various stressors such as drought. “By tuning PHR, for example, we could reduce the phosphate sensitivity of plants and promote the symbiosis at higher concentrations of phosphate in the soil and thus use its other benefits for agricultural production,” says the Professor of Plant Genetics.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Caroline Gutjahr
Technical University of Munich
Professorship of Plant Genetics
Tel.: +49 8161 71 2680
Caroline.Gutjahr@tum.de
https://www1.ls.tum.de/plantgen

Originalpublikation:

Debatosh Das, Michael Paries, Karen Hobecker, Michael Gigl, Corinna Dawid, Hon-Ming Lam, Jianhua Zhang, Moxian Chen & Caroline Gutjahr (2022): PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nature Communications 13 :477. DOI: 10.1038/s41467-022-27976-8. URL: https://www.nature.com/articles/s41467-022-27976-8

Weitere Informationen:

https://mediatum.ub.tum.de/1647012 (high resolution images)
https://www.tum.de/en/about-tum/news/press-releases/details/37178 (press release)

Media Contact

Dr. Katharina Baumeister Corporate Communications Center
Technische Universität München

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…