Plants recycle too

Only with the help of the TPLATE-complex of eight different proteins plants are able to take up material from the outside via endocytosis.<br><br>copyright: Clara Sanchez Rodriguez/MPI-MP<br>

Cells communicate through proteins embedded in their cell membranes. These proteins have diverse functions and can be compared with antennas, switches and gates.

For the well-being of the cell, it has to adjust the composition of its membrane proteins and lipids constantly. New proteins are incorporated, while old proteins get recycled or eliminated. The process by which membrane material gets internalized is called endocytosis.

A research team headed by Daniël van Damme, Geert De Jaeger from VIB and Ghent University (Belgium) and Staffan Persson from the Max Planck Institute of Molecular Plant Physiology in Golm near Potsdam (Germany) has now identified a new protein complex which is crucial for endocytosis in plants. This finding has now been published in the scientific journal Cell.

Take up and recycle
Plants and animals are made up of billions of cells. For the optimal functioning of organisms, cells must receive information from their neighboring cells and from their surroundings. Cells communicate through proteins anchored in their membranes. These can be receptors, which function as antennas or switches to detect the presence of certain molecules, or transport proteins, which act as gates to control the uptake of nutrients. To optimize the communication, the cell needs to adjust the composition of its membrane at any time. The process by which new membrane proteins are sent to the membrane is called exocytosis. The opposite process, which is needed to take up membrane material, is called endocytosis. To initiate endocytosis, adaptor proteins need to recognize specific areas of the membrane to be internalized. Proteins that encage this membrane area are subsequently recruited. As a result, a small portion of the membrane will then invaginate and ultimately pinch off to produce a vesicle inside the cell. Membrane proteins incorporated in such vesicles can then be degraded, recycled or transported to other parts of the cell.
The TPLATE complex shows the way
For several decades, endocytosis has been heavily investigated in plants, animals and yeast. This has resulted in a wealth of information about the many proteins involved, but also about the complex interactions between them. Nevertheless, only a few adaptor-related components have been found in plants. Using state-of-the-art techniques, researchers of VIB, Ghent University and the Max-Planck-Institute in Potsdam-Golm have now identified an adaptor protein complex which is essential for endocytosis and which only exists in plants. The complex is built of the protein TPLATE and seven previously unknown proteins. The TPLATE complex turned out to be key for plant endocytosis as it arrives first at the position where endocytosis should get initiated. In terms of evolution, the plant specificity of the TPLATE complex was a surprising discovery. While proteins involved in endocytosis, such as clathrin, are conserved across the animal and plant kingdoms, the members of the TPLATE complex appears specially designed for plants. These research results are now published in the prestigious scientific journal Cell thanks to intense collaboration between VIB and the Max-Planck-Institute.
Astrid Gadeyne, Clara Sánchez-Rodríguez, et al.
The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants
Cell, online publication
Contact
For VIB and Ghent University
Dr. Daniël Van Damme – daniel.vandamme@psb.ugent.be Tel. +32 (0)9 33 13 913
Prof. Geert De Jaeger – geert.dejaeger@psb.ugent.be Tel. + 32 (0)9 33 13 870
For the Max-Planck-Institute Potsdam-Golm
Dr. Staffan Persson – Persson@mpimp-golm.mpg.de Tel. +49 (0)331 567 8155
Dr. Clara Sanchez-Rodriguez – Rodriguez@mpimp-golm.mpg.de Tel. +49 (0)331 567 8151
VIB
VIB is a non-profit research institute in life sciences. About 1,300 scientists conduct strategic basic research on the molecular mechanisms that are responsible for the functioning of the human body, plants, and microorganisms. Through a close partnership with four Flemish universities − UGent, KU Leuven, University of Antwerp, and Vrije Universiteit Brussel − and a solid funding program, VIB unites the forces of 76 research groups in a single institute. The goal of the research is to extend the boundaries of our knowledge of life. Through its technology transfer activities, VIB translates research results into products for the benefit of consumers and patients and contributes to new economic activity. VIB develops and disseminates a wide range of scientifically substantiated information about all aspects of biotechnology. More information: http://www.vib.be.
Ghent University
After more than twenty years of uninterrupted growth, Ghent University is now one of the most important institutions of higher education and research in the Low Countries. Ghent University yearly attracts over 35,000 students, with a foreign student population of over 2,200 EU and non-EU citizens. Ghent University offers a broad range of study programs in all academic and scientific fields. With a view to cooperation in research and community service, numerous research groups, centers and institutes have been founded over the years. For more information http://www.UGent.be.
The Max-Planck-Institute
The Max Planck Institute of Molecular Plant Physiology belongs to the Max Planck Society, Germany's most successful research organization. The Institute conducts basic research and investigates metabolic and molecular processes in plant cells, tissues, organs and whole plants. The overall goal is to understand how metabolism and growth are regulated, to learn how they respond to environmental factors, and to unravel genetic factors that underlie these processes and responses. The institute is organised into three departments each led by a director. Within the departments, young scientists lead their own research groups. Currently 21 groups conduct cutting edge research. About 400 employees from all over the world work at the MPIMP.

Weitere Informationen:

http://www.vib.be
http://www.UGent.be
http://www.mpimp-golm.mpg.de/2168/en

Media Contact

Ursula Ross-Stitt Max-Planck-Institut

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…