Principles of Origami used to position sensors inside 3D-bioprinted tissues
Researchers at Tel Aviv University relied on principles of origami, the Japanese art of paperfolding, to develop an original and innovative solution for a problem that has been troubling researchers worldwide: positioning sensors inside 3D-bioprinted tissue models. Instead of bioprinting tissue over the sensors (found to be impracticable) they design and produce an origami-inspired structure that folds around the fabricated tissue, allowing the insertion of sensors into precisely pre-defined locations.
The study was a joint effort of researchers from several units at TAU: the School of Neurobiology, Biochemistry and Biophysics, the Koum Center for Nanoscience and Nanotechnology, the Department of Biomedical Engineering, the Sagol Center for Regenerative Medicine, the Sagol School of Neuroscience and the Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine. The researchers are: Noam Rahav, Adi Soffer, Prof. Ben Maoz, Prof. Uri Ashery, Denise Marrero, Emma Glickman, Megane Beldjilali-Labro, Yakey Yaffe, Keshet Tadmor, and Yael Leichtmann-Bardoogo. The paper was published in the leading scientific journal Advanced Science.
Prof. Maoz explains: “The use of 3D-bioprinters to print biological tissue models for research is already widespread. In existing technologies, the printer head moves back and forth, printing layer upon layer of the required tissue. This method, however, has a significant drawback: The tissue cannot be bioprinted over a set of sensors needed to provide information about its inner cells, because in the process of printing the printer head breaks the sensors. We propose a new approach to the complex problem: origami.”
The innovation is based on an original synergy between science with art. Using CAD (Computer Aided Design) software the researchers design a multi-sensing structure customized for a specific tissue model – inspired by origami paperfolding. This structure incorporates various sensors for monitoring the electrical activity or resistance of cells in precisely chosen locations within the tissue. The computer model is used to manufacture a physical structure which is then folded around the bioprinted tissue – so that each sensor is inserted into its predefined position inside the tissue. The TAU team has named their novel platform MSOP – Multi-Sensor Origami Platform.
The new method’s effectiveness was demonstrated on 3D-bioprinted brain tissues, with the inserted sensors recording neuronal electrical activity. The researchers emphasize, however, that the system is both modular and versatile: it can place any number and any type of sensors in any chosen position within any type of 3D-bioprinted tissue model, as well as in tissues grown artificially in the lab such as brain organoids – small spheres of neurons simulating the human brain.
Prof. Maoz adds: “For experiments with bioprinted brain tissue, we demonstrated an additional advantage of our platform: the option for adding a layer that simulates the natural blood-brain barrier (BBB) – a cell layer protecting the brain from undesirable substances carried in the blood, which unfortunately also blocks certain medications intended for brain diseases. The layer we add consists of human BBB cells, enabling us to measure their electrical resistance which indicates their permeability to various medications.”
The researchers summarize: “In this study, we created an ‘out-of-the-box’ synergy between scientific research and art. We developed a novel method inspired by origami paperfolding, enabling the insertion of sensors into precisely predefined locations within 3D-bioprinted tissue models, to detect and record cell activity and communication between cells. This new technology is an important step forward for biological research.”
Link to the article:
https://onlinelibrary.wiley.com/doi/10.1002/advs.202305555
Media Contact
Noga Shahar
Tel-Aviv University
Taupr@tauex.tau.ac.il
Office: 972-547-705-223
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…