Protein Pairs Make Cells Remember

Cells with protein pairs store information for the long term (blue). Cells with single proteins do not display persistent memory (red and cyan). University of Basel, Biozentrum

Like our brains, individual cells also have a kind of memory, which enables them to store information. To make this possible, the cells require positive feedback from their proteins. The research group led by Prof. Attila Becskei at the Biozentrum of the University of Basel has now discovered that the proteins need to form pairs in these feedback loops to store information.

Cellular memory works only with protein pairs

The feedback by protein pairs works properly under specific conditions: “For dimerization the proteins must be present in the right concentration,” says Attila Becskei. If there are too few proteins, no pairs form and the cell does not store information. But when the protein concentration is too high, coupling does not work either.

“It's similar to us humans. In large cities, packed with people, dating is difficult. But living alone in the countryside does not make it easier to find a partner. So we also need to be at the right place at the right time,” illustrates Becskei.

Once the protein pairs are formed they give the cell the signal to store information in its memory. This makes the cell more sensitive to remark environmental stimuli and to respond to these more quickly in the future.

Paired protein also essential for cell differentiation

The cell not only requires the appropriate feedback from protein pairs in order to remember information but also for cell division and cell differentiation – the development of specialized cells. The understanding of the functioning of such feedback loops can reveal how to erase the cell’s memory. This is necessary, for example, for being able to turn a specialized cell, such as a skin cell, back into an unspecialized stem cell.

“For cellular reprogramming the cell must first forget that is was a skin cell,” says Becskei. “Using mathematical models we have developed, we now want to investigate, which other feedback loops contribute to cellular memory.”

Original source

Chieh Hsu, Vincent Jaquet, Mumun Gencoglu & Attila Becskei
Protein dimerization generates bistability in positive feedback loops
Cell Reports (2016), doi: 10.1016/j.celrep.2016.06.072

Further information

Prof. Dr. Attila Becskei, University of Basel, Biozentrum, tel. +41 61 267 22 22, email: attila.becskei@unibas.ch

Heike Sacher, University of Basel, Communications Biozentrum, tel. +41 61 267 14 49, email: heike.sacher@unibas.ch

Media Contact

Reto Caluori Universität Basel

More Information:

http://www.unibas.ch

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…