Epigenetic research uncovers new targets for modification enzymes
A consortium of scientists, led by Albert Jeltsch at Jacobs University, Breman, Germany, Yoichi Shinkai at Kyoto University, Japan, and Xiaodong Cheng at Emory University, has now discovered new non-histone targets for one enzyme previously believed to modify only histones–the group of proteins that creates tightly bundled packages of DNA strands. The research is reported online in the journal Nature Chemical Biology.
These modification enzymes, called protein methyltransferases, add methyl groups to lysine amino acids within the histones and change their influence on gene expression. The newly identified non-histone targets add yet another influence on gene expression in addition to the already-known DNA methylation and histone modifications in the epigenome.
The international research team has found that a histone methyltransferase called G9a adds methyl groups to other proteins in addition to histones and changes the behavior of those proteins. The researchers used a peptide array technology called SPOT to identify the new enzyme targets.
“This discovery broadens our view of methyltransferases and tells us that epigenetic regulation in cells is even more complicated than we thought,” says principal investigator Xiaodong Cheng, PhD, professor of biochemistry at Emory University School of Medicine and a Georgia Research Alliance Eminent Scholar.
“We have known for some time that we had a great deal more to discover about methyltransferases. This is an important piece of the puzzle, and additional research will continue to help us unwind the multiple mechanisms involved in epigenetic gene regulation.”
Media Contact
More Information:
http://www.emory.eduAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…