MicroRNAs in plants
Researchers at MIT and Rice University have discovered that microRNAs, an emerging class of non-protein gene regulators thus far only identified in animals, also exist in plants. By extending the known phylogenetic range of miRNAs to plants, this work points to an ancient evolutionary origin for microRNAs. The report is published in the July 1 issue of the scientific journal Genes & Development.
MicroRNAs (miRNAs) compose a class of short, noncoding RNAs, 20-24-nucleotides in length, that have been found in eukaryotic organisms ranging from roundworms, to fruit flies, to humans. The founding members of this class of RNAs are lin-4 and let-7, two small RNAs that are processed from a longer stem-loop structure by the Dicer enzyme, and function to control developmental timing in the roundworm C. elegans. Over 150 other miRNAs have since been found in animals.
Dr. David Bartel and colleagues have discovered that miRNAs are also present in plants, where they, like their animal counterparts, may also regulate gene expression during development.
Dr. Bartel and colleagues have identified 16 novel miRNAs in the model plant, Arabidopsis, which share sequence and structural similarities to animal miRNAs. The researchers demonstrate that plant miRNAs are processed by a plant homologue of the Dicer enzyme, CARPEL FACTORY (CAF), suggesting that animal and plant miRNAs share a common processing mechanism, and that the previously described role of CAF in plant development may, in fact, be mediated by miRNAs.
As Dr. Bartel describes, “The discovery that microRNAs are present in plants as well as animals shows that this class of noncoding RNAs arose early in eukaryotic evolution and suggests that microRNAs have been shaping gene expression since the emergence of multicellular life.”
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Largest magnetic anisotropy of a molecule measured at BESSY II
At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a…
Breaking boundaries: Researchers isolate quantum coherence in classical light systems
LSU quantum researchers uncover hidden quantum behaviors within classical light, which could make quantum technologies robust. Understanding the boundary between classical and quantum physics has long been a central question…
MRI-first strategy for prostate cancer detection proves to be safe
Active monitoring is a sufficiently safe option when prostate MRI findings are negative. There are several strategies for the early detection of prostate cancer. The first step is often a…