Scientists at VTT and the University of Florida take immunotechnology to a new level
Scientists at VTT and the University of Florida take immunotechnology to a new level
Mimicking the cell walls transport system by biocoated nanotubes opens novel possibilities for numerous applications
Living cells transport selectively molecules in and out through their cell walls. This process is remarkably accurate and efficient. In co-operation with Professor Charles Martin`s workgroup from the University of Florida, VTT`s Research Professor Hans Söderlund and Researcher Tarja Nevanen have developed a molecule membrane mimicking this property of the cell wall. The membrane selectively transports a given drug molecule from a mixture to the other side of the membrane.
The system developed by VTT and UF is among the first methods intended for nanobiotechnology applications. Its key principles was published in the prestigious Science Magazine on 21 June 2002.
In the new method, holes smaller than 1/10,000 of a millimetre are made in aluminium membrane with laser technology. Genetically engineered antibody fragments are attached to these voids. The antibodies have a unique ability to distinguish even very similar molecules. In this application, molecule pumps have been built from the antibodies on the membrane that function with a principle similar to the protein channels on the membranes of living cells.
The antibodies identify and momentarily bind the selected molecules from the compound outside the membrane and then release them on the other side of the membrane. The molecules move over the membrane towards the smaller concentration area, so the system needs no externally provided energy.
Antibodies can be created to bind almost any molecules, such as hormones, environmental toxins, antibiotics, narcotics and drugs. The versatility of antibodies enables extensive usage of the system developed by VTT and UF. The application is intended for the separation of so-called mirror image forms (enantiomers), i.e. the purification of medical substances. By choosing different antibodies the method can be used for the separation of any molecules.
Nanotechnology is one of the most active research areas at the moment. Nanotechnology is one of the key focus areas in the sixth EU Framework Programme.
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…