The secret behind silkworm's hardy stomachs
Mulberry leaves contain an extremely high amount of alkaloids that inhibit enzymes that break down sucrose (sugar), and thus are potentially quite toxic. However, one type of sucrase called beta-fructofuranosidase is not affected by these alkaloids.
Until now, this enzyme has not been found in any animals, but Toru Shimada and colleagues believed this might explain the silkworm’s unique diet.
The researchers scanned the silkworm genome and discovered two fructofuranosidase genes, although only one was actually expressed in the worm. This gene (BmSuc1) was, as expected, concentrated in the worm’s gut, although surprisingly was also prevalent in the silk gland. When they isolated the enzyme from silkworms, the researchers found it could effectively digest sucrose.
Shimada and colleagues note that further work is needed to determine if this special enzyme is the sole reason for silkworm’s resistance to mulberry toxins. It’s possible that fructofuranosidases may turn up in other insects that cannot eat mulberry leaves, indicating additional factors are at work.
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Novel catalyst for charge separation in photocatalytic water splitting
A research team led by Prof. JIANG Hailong, Prof. LUO Yi, and Prof. JIANG Jun from the University of Science and Technology of China (USTC) discovered a metal-organic framework (MOF)…
Finding a missing piece for neurodegenerative disease research
Research led by the University of Michigan has provided compelling evidence that could solve a fundamental mystery in the makeup of fibrils that play a role in Alzheimer’s, Parkinson’s and…
BESSY II: New procedure for better thermoplastics
Thermoplastic blends, produced by a new process, have better resilience. Now, experiments at the IRIS beamline show, why: nanocrystalline layers increase their performance. Bio-based thermoplastics are produced from renewable organic…