Mutations Induce Severe Cardiomyopathy
This was a key finding from current research conducted by Dr. Sabine Klaassen, Susanne Probst, and Prof. Ludwig Thierfelder of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Prof. Erwin Oechslin (Adult Congenital Cardiac Centre, Toronto, Canada) and Prof. Rolf Jenni (Cardiovascular Center, Zürich, Switzerland).
In LVNC, the myocardial tissue of the left ventricle takes on a sponge-like appearance and protrudes into the ventricle which can greatly impair the pumping performance of the heart.
Of the 63 LVNC patients studied, the scientists found 11 patients (17 percent) with several myocardial gene mutations. The researchers suspect that these genetic mutations can trigger severe cardiomyopathy. In the future, genetic testing can determine whether individual family members of the affected patients also carry this mutation and are, thus, predisposed to LVNC. The results of the study have just been published in the journal Circulation (2008, Vol. 117, pp. 2893-2901)*.
The heart muscle makes the heart beat about seventy times per minute, thus providing the entire body with oxygen and nutrients. Dysfunction of the heart muscle may lead to cardiac arrhythmia, cardiac insufficiency, and even heart failure.
In LVNC, a disease which was just discovered a few years ago, the left ventricle of the heart resembles that of an embryo. Since the disease can also occur in small children, scientists assumed it was a developmental disorder of the heart muscle tissue.
Now, Dr. Klaassen and her colleagues have been able to show that the disease is due to a genetic defect and is thus a familial disease. It affects genes whose proteins are responsible for contraction and, thus, for the pumping function of the heart muscle, i.e. genes encoding beta-myosin heavy chain, alpha-cardiac actin, and troponin T.
Genetic testing on individual families showed that the probability of an affected parent passing on the gene mutations to his or her children is 50 percent. “That is why gene testing of these families is so important,” Dr. Klaassen said.
If a gene test turns out to be negative, the tested person can be certain that he or she will not get LVNC. But if the test is positive, the implication is not so clear. “As a consequence of the altered heart muscle tissue, the affected person may develop functional myocardial impairment later in life,” Dr. Klaassen explained.
However, a mutation in these genes need not inevitably lead to myocardial insufficiency. “We examined a 70-year-old patient who did not show any symptoms of the disease although she had the mutation,” the cardiologist added. “Apparently, other genetic factors, as well as environmental factors, like a healthy lifestyle, influence the manifestation of the disease.”
*Mutations in Sarcomere Protein Genes in Left Ventricular Noncompaction
Sabine Klaassen, MD1,2*; Susanne Probst, MSc1*; Erwin Oechslin, MD3; Brenda Gerull, MD1, Gregor Krings, MD2; Pia Schuler, MD4; Matthias Greutmann, MD4; David Hürlimann, MD4; Mustafa Yegitbasi5, MD; Lucia Pons, MD6, Michael Gramlich, MD1; Jörg-Detlef Drenckhahn, MD1; Arnd Heuser, MD1, Felix Berger, MD2,5; Rolf Jenni, MD4; Ludwig Thierfelder, MD1,7
1)Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; 2)Clinic of Pediatric Cardiology, Charité, Humboldt University Berlin, Germany; 3)Adult Congenital Cardiac Centre at Peter Munk Cardiac Centre, University Health Network/Toronto General Hospital, Toronto, Canada; 4)Cardiovascular Center, Division of Echocardiography, University Hospital Zürich, Zürich, Switzerland; 5)Department of Congenital Heart Defects/Pediatric Cardiology, German Heart Institute Berlin, Berlin, Germany; 6)Ospedale Regionale di Mendrisio Beata Vergine, Mendrisio, Switzerland; 7)Helios Clinic Berlin-Buch, Charité, Humboldt University Berlin, Germany
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de
Media Contact
More Information:
http://www.mdc-berlin.de/en/newsAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…