How birds spot the cuckoo in the nest

The problem remained largely unsolved while looking at it through our own eyes. It was only when people started thinking from the birds' perspective that they began to understand how hosts recognise a cuckoo egg in the nest.

Marcel Honza from the Academy of Sciences of the Czech Republic explains that birds see UV wavelengths that are well outside our own visual range. Knowing that many bird eggs reflect UV wavelengths, Honza wondered whether altering the reflected UV spectrum of an egg would affect a bird's ability to recognise it as foreign and reject it.

Would a blackcap recognise and evict an impostor egg if the reflected UV spectrum were different from the wavelengths reflected by the bird's own clutch? Teaming up with Lenka Polaèiková, Honza headed into a near-by forest to test blackcap responses to impostor eggs and publish their findings on July 18th in The Journal of Experimental Biology at http://jeb.biologists.org.

But instead of testing the birds' reactions to real cuckoo eggs, the team found abandoned blackcap eggs, introducing them as impostors to successful blackcap clutches. Having identified nests with well-established clutches, the team coated some impostor eggs in UV blocker, to alter their UV appearance, and others in Vaseline, which didn't alter the egg's UV reflectivity, before planting the impostors in their new nest. Then the team kept their fingers crossed, hoping that the nests weren't washed out by a heavy downpour or raided by a hungry predator, as they waited 5 days to see if the parents rejected the interlopers.

Of the 16 eggs coated in Vaseline, 11 of the impostors were accepted by the nesting parents, while five were rejected; most of the interloper blackcap eggs were visually indistinguishable from the nesting parents' own eggs and were accepted as belonging to the brood. However, it was a different matter for the birds sitting on UV-block-coated impostors. Seventeen brooding parents evicted the strange looking egg, pecking at the shell until they had made a large enough hole to stick their beak in and carry it away. Only 11 blackcaps accepted the interloper with its altered appearance.

The UV appearance of the eggs was very important in enabling the blackcaps to recognise the new eggs as impostors. The blackcaps rejected far more eggs when Polaèiková and Honza covered them in UV block. By altering the eggs' UV reflectivity the team had made them stand out from the crowd.

Honza admits that he was surprised that the UV reflectivity had such a significant effect on the blackcap's ability to reject an impostor. Having found that an interloper's UV appearance is key to its acceptance in a clutch, Honza is keen to see whether cuckoos try to outsmart their victims by choosing clutches that closely match their own eggs' UV reflectivity.

Media Contact

Kathryn Phillips EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…