Hebrew University-Hadassah Medical School researchers working to prevent mad cow disease

Prion Research Center to open this week

Scientists around the world are striving to learn as much as possible about the phenomenon that causes mad cow disease so that they will be prepared if and when an epidemic breaks out, according to Dr. Albert Taraboulos of the Institute of Microbiology of the Hebrew University-Hadassah Medical School. He explained that the exact incubation period of the disease is unknown and so scientists are working hard to ensure that they are not caught unprepared.

Dr. Taraboulos and his research team are trying to develop drugs that can prevent people from contracting the disease and drugs that can cure those who have contracted it. They also are trying to determine how prions, the molecular agent that causes mad cow disease (or BSE), propagate.

The outbreak of mad cow disease in Europe, and the finding that this fatal neurodegeneration has transmitted to humans, have signaled the appearance of a worldwide health threat and have brought prions to the forefront of public attention. BSE is just one of many prion diseases. Prions are an exception in biology in that they have no genes. In fact, prions are just a corrupt form of one of the patient’s protein, and by corrupting more of our own protein they proliferate and cause disease. Prions are infectious, and more than 100 people have already succumbed to the human form of mad cow disease in Europe. The discovery in Israel, last month, of a cow sick with BSE has demonstrated that Israel is not immune to infectious prions.

Prion disorders are also unique in that they can also be inherited (through a mutation in the prion protein gene). Familial prion diseases include the well known Creutzfeldt-Jakob disease (CJD). Israel has had a long acquaintance with prions. In fact, the largest cluster of familial CJD in the world is found in Israel. A better understanding of prions also may improve understanding of Alzheimer’s disease.

These circumstances have spurred the Hebrew University of Jerusalem and the Hadassah Medical Organization to create the Prion Research Center dedicated to the research of prion diseases in Israel. Located at the Faculty of Medicine, Ein Kerem campus in Jerusalem, this center will conduct and coordinate research programs and epidemiological studies on prions diseases. The center will exploit the extensive prion expertise that is already in place at the campus, particularly in the laboratory of Prof. Ruth Gabizon at the department of Neurology in Hadassah and Dr. Taraboulos’ research team, as well as cooperate with researchers from Israel and abroad.

The new center will combine clinical and basic activities. It will try to improve diagnostic procedures, and will attempt to develop therapies. It will collaborate extensively with government and regulatory agencies in Israel and abroad. It is hoped that the new center will help cull the danger of prion spread in Israel and alleviate patient suffering.

The Prion Research Center will open at a ceremony on Wednesday, July 31 at 5:30 p.m. at the Hebrew University-Hadassah Medical School in Ein Kerem, Jerusalem.

For further information, contact:

Heidi Gleit, HU foreign press liaison: tel. 02-588-2904; cell. 064-454-593; email heidig@savion.cc.huji.ac.il

Orit Sulitzeanu, HU spokeswoman: tel. 02-588-2811

Yael Bossem Levy, Hadassah spokeswoman: tel. 02-677-6220

Media Contact

Heidi Gleit Hebrew University

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bismuth–antimony crystals demonstrating topological thermoelectrics under a weak magnetic field.

Magnetic Effect: Groundbreaking Discovery for Low-Temperature Thermoelectric Cooling

Researchers at the Max Planck Institute for Chemical Physics of Solids, in collaboration with Chongqing University and the Max Planck Institute of Microstructure Physics, have achieved a breakthrough in topological…

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…