Enzyme discovery to benefit homeland security, industry
Scientists at the Department of Energys Pacific Northwest National Laboratory have successfully immobilized enzymes while simultaneously enhancing their activity and stability, opening up new possibilities for using tailored nanoporous materials. The findings, reported in an upcoming issue of the Journal of the American Chemical Society (available online Aug. 28), could enable the development of novel sensor and decontamination systems for homeland security, environmental protection and energy generation as well as new industrial chemicals and separations.
“For decades, scientists have been searching for ways to immobilize soluble enzymes with a variety of solid materials. But the results have been disappointing because only small amounts of the immobilized enzymes show any biological activity,” said Eric Ackerman, PNNL molecular biologist. “For the first time, we have immobilized an enzyme at high concentrations in a way that actually enhances its stability and activity.”
In lab tests, PNNL scientists nearly doubled the activity levels of an enzyme called organophosphorus hydrolase, known for its potential for biosensing and decontaminating poisonous agents.
“By using different highly active and stable immobilized enzymes, we could potentially make enzymatic systems to inactivate certain chemicals or bioweapons, thus serving as a protective barrier in air filtration systems,” said Ackerman.
Fabrication of a more stable and active enzyme delivery method could potentially benefit other industries as well. For example, food processing companies use natural enzymes to produce items such as cheese, beer and soft drinks, while the biomedical industry uses them to manufacture drugs. Enzymes, which are proteins found in all organisms from humans to viruses, function as catalysts. Increasing an enzymes activity—while enhancing enzyme stability—could facilitate more efficient chemical processes.
To achieve enhanced stability and activity, scientists modified existing nanoporous silica originally developed at PNNL to sequester mercury for environmental remediation. This material, called SAMMS—for Self-Assembled Monolayers on Mesoporous Supports—contains uniform pores that can be prepared with a variety of pore sizes according to the application. In this case, researchers enlarged the pores to 30 nanometers, which is a size sufficiently spacious to accommodate the immobilized enzymes. Then, the pore surfaces were coated with a specific chemical compound to provide an optimal environment for enzyme activity and stability.
The JACs paper is available online at http://pubs.acs.org/journals/jacsat/asap.cgi/jacsat/asap/pdf/ja026855o.pdf. This research was conducted through PNNLs Nanoscience and Nanotechnology Initiative (www.pnl.gov/nano).
Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.
Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.
Media Contact
More Information:
http://www.pnl.gov/news/2002/02-29.htmAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…