Clemson researcher takes part in breakthrough research on in

Recent research shows that insects and humans have something surprising in common: Some six-legged species take in oxygen using a similar means to the way we fill our lungs.

Scientists from the Field Museum and Argonne National Laboratory in Chicago and from Clemson University used a powerful x-ray imaging device to get the first comprehensive view of live insects breathing. Their observations and research results are reported in the Jan. 24 issue of Science, an internationally respected research publication.

“The discovery of this fundamental aspect of respiratory biology for insects could revolutionize the field of insect physiology,” said lead author Mark Westneat, associate curator of zoology at the Field Museum.

Researchers discovered that many insects, including crickets, wood beetles and carpenter ants, are able to breathe using a mechanism similar to the one we use to ventilate our own lungs. This is remarkable because insects do not have lungs, but rather a system of internal tubes called tracheae, which they use to breathe through slow, passive means.

The study showed that some insects also breathe by compressing and expanding tracheae in their head and thorax, using them like lungs. The breathing cycles can be as fast as one per second, producing air exchange rates of nearly 50 percent, similar to moderately exercising humans.

“This rapid, active breathing mechanism might help to explain the tremendous success of insects, since the ability to rapidly deliver oxygen to body tissues may have played a role in the evolution of aspects of insect function, ranging from flight to the performance of sense organs, said Richard W. Blob (pronounced “Bl-oh-b”), assistant professor in Clemson University’s biological sciences department.

“As we come to understand the basic physiology of animal respiration and circulation through research such as this project, we have the potential to make further discoveries that can ultimately improve our ability to treat disease in humans.”

Until now, it has not been possible to see movement inside living insects. Researchers solved the problem by using a synchrotron, a circular particle accelerator that can generate x-rays. The one at Argonne National Laboratory ranks among the most powerful in the world.

“This is the first time anyone has applied this technology to create x-ray videos of living animals,” says co-author Wah-Keat Lee, a physicist at the Argonne lab. “This work opens up the possibility of developing a powerful new technique for studying how living animals function.”

Media Contact

Peter Kent EurekAlert!

More Information:

http://www.clemson.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-performance cerium oxide-based thermal switch for efficient heat flow control and sustainable energy systems.

Durable, Efficient, Sustainable: The Rise of Cerium Oxide Thermal Switches

Groundbreaking cerium oxide-based thermal switches achieve remarkable performance, transforming heat flow control with sustainable and efficient technology. Cerium Oxide-Based Thermal Switches Revolutionize Heat Flow Control Thermal switches, which electrically control…

Industrial robots lowering CO2 emissions in manufacturing for sustainable global trade.

How Industrial Robots are Reducing Emissions in Global Manufacturing

A new study explores the intersection of industrial automation and environmental sustainability, focusing on the role of industrial robots in reducing the carbon intensity of manufacturing exports. The research demonstrates…

3D-printed bioceramic grafts for craniomaxillofacial bone regeneration, showcasing precision medicine and patient-specific solutions.

Patients Can Heal Through Precise, Personalized Bioceramic Grafts

A recent review is transforming the landscape of craniomaxillofacial bone regeneration with the introduction of personalized bioceramic grafts. This pioneering research explores the fabrication and clinical potential of synthetic grafts…