Stanford researcher studies newly discovered ’good’ cholesterol gene

Stanford University Medical Center researchers have found that a recently discovered gene regulates HDL (high density lipoproteins) cholesterol, also known as “good” cholesterol. The study, published in the February issue of the Journal of Clinical Investigation, could lead to new therapies for heart disease, said lead author Thomas Quertermous, MD.

“This is a significant and unexpected finding, and the gene is going to be a real target for the prevention and treatment of heart disease,” said Quertermous, the William G. Irwin Professor and chief of cardiovascular medicine at Stanford University School of Medicine. “This type of thing doesn’t happen every day.”

HDL cholesterol, often referred to as the “good” cholesterol, has been proven to impact a person’s risk of developing heart disease. “HDL cholesterol is an independent predictor of one’s risk,” said Quertermous. “If you have a high level of HDL cholesterol your chance of getting heart disease is very low.”

Researchers know that levels of HDL cholesterol are regulated in part by members of the lipase gene family. Three years ago, Quertermous’ team and a laboratory on the East Coast simultaneously discovered the newest member of that family and found that its protein was expressed in a variety of tissues. Subsequent studies showed that the new gene – the endothelial lipase gene (LIPG) – played a role in lipid metabolism.

“It was a striking, if not dramatic, finding that this gene that we found in the blood vessel walls appeared to regulate HDL cholesterol levels,” said Quertermous.

Quertermous’ team sought to examine the gene’s exact role in regulating HDL cholesterol level by examining genetic models with altered levels of endothelial lipase (EL) expression. Working with mouse models, the researchers increased EL expression in one group by inserting copies of the human gene and decreased EL expression by knocking out the LIPG gene in another group.

Quertermous reports that the findings were striking: Altering the genes showed a clear and significant inverse relationship between HDL cholesterol level and EL expression. Levels of HDL cholesterol decreased by 19 percent in the first group and increased by 57 percent in the group whose gene was knocked out.

“When we overexpressed the human gene in the mice, the HDL cholesterol levels dropped,” said Quertermous. “Conversely, when we knocked out the gene in mice, the levels were much higher.”

Quertermous said that his team lacks insight into the mechanism by which EL impacts HDL cholesterol levels, and that this is something his team will explore. The group will also further study mouse models, and a group of human patients, to see if changes in HDL cholesterol levels directly correlate with heart disease. “My hypothesis – and strong suspicion – is that if you knock out the gene, your chance of disease development is decreased,” said Quertermous.

Quertermous said a greater understanding of this gene’s role in HDL cholesterol’s formation and metabolism will help researchers regulate this risk factor. “This becomes one of the most attractive targets available for the development of pharmaceutical agents to modulate HDL cholesterol levels,” he said.

The research was done at the Donald W. Reynolds Cardiovascular Clinical Research Center at Stanford, which was established with a grant from the Donald W. Reynolds Foundation. Quertermous’ collaborators on the study include Allen Cooper, MD, professor of medicine at Stanford, and researchers at the Palo Alto Medical Foundation.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions – Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Michelle Brandt at (650) 723-0272 (mbrandt@stanford.edu)
BROADCAST MEDIA CONTACT: Neale Mulligan at (650) 724-2454 (nealem@stanford.edu)

Media Contact

Michelle Brandt EurekAlert!

More Information:

http://mednews.stanford.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

New perspectives for material detection

CRC MARIE enters third funding period: A major success for terahertz research: Scientists at the University of Duisburg-Essen and the Ruhr University Bochum have been researching mobile material detection since…

CD Laboratory at TU Graz Researches New Semiconductor Materials

Using energy- and resource-saving methods, a research team at the Institute of Inorganic Chemistry at TU Graz aims to produce high-quality doped silicon layers for the electronics and solar industries….

Study on gene regulation with surprising results

Some sequences in the genome cause genes to be switched on or off. Until now, each of these gene switches, or so-called enhancers, was thought to have its own place…