Advances in the Separation of Nucleosides

Researchers in Oxford University’s Department of Inorganic Chemistry have devised a method for the selective separation and recovery of nucleoside phosphates from complex reaction mixtures using Layered Double Hydroxide (LDH) materials.

Nucleoside phosphates are used extensively in industry as intermediates or additives in nutraceutical and pharmaceutical preparation, as well as in medical and separation science. In particular many new antiviral agents are based on nucleosides. Supplying the potential demand for nucleoside phosphates poses a challenge to current technological approaches. Therefore, simple purification processes for the recovery of large quantities of valuable nucleoside phosphates contained within mixtures of other nucleoside phosphates is needed.

In the new Oxford method, LDH materials are used as fast, efficient and high capacity ion exchange materials for the removal of organic and inorganic anions from aqueous streams because they have the capacity to form intercalation compounds with the desired anions. The majority of LDHs are made from anionic clays or clay mineral materials. Following the intercalation step, the desired nucleoside phosphate compounds are removed from within the LDH material by simple chemical means to leave the LDH material intact and ready for re-use. The main competitive advantages of this method lie within the high purity of the resultant nucleoside phosphates, the ease of scale up and the fewer number of process steps. Additionally, the LDH material is designed for use with conventional filtration technologies.

Isis Innovation, Oxford University’s technology transfer company, has filed a UK priority patent application for this technology and welcomes contact from potential commercial partners.

Media Contact

Jennifer Johnson alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…