How humans lost their scents
In at least one type of endeavor, humans cant even begin to compete with their best friends. Dogs can be trained to sniff out drugs and explosives or to track down a crime suspect by smell. Why cant we do the same? Scientists from the Weizmann Institute of Science and the Max Planck Institute for Evolutionary Anthropology propose an explanation for this ancient quandary.
All mammals, including humans, have about 1,000 genes encoding smell-detecting proteins, or olfactory receptors. These receptors, located in the mucous lining of the nose, identify scents by binding to molecules of odorous substances. However, not all olfactory receptor genes are functioning in all species. It is the percentage of the working olfactory genes that determines the sharpness of smell in animals and humans.
In previous studies, the team of Prof. Doron Lancet of the Weizmann Institutes Molecular Genetics Department discovered that more than half of these genes in humans contain a mutation that prevents them from working properly. In a new study, published in the March 18, 2003 Proceedings of the National Academy of Sciences (PNAS), the scientists tackled the next question: is the genetic “loss” a relatively old phenomenon affecting all primates, or did it occurr only in humans?
To resolve this issue, the researchers compared the DNA sequences of 50 olfactory receptor genes that are common to humans and different species of apes and monkeys. They found that 54 percent of the genes were impaired in humans, as opposed to only 28 to 36 percent in the other species. This research has made it possible to reconstruct this senses deterioration over the course of evolution: apparently, its decline took place within an “evolutionary moment” – only 3 to 5 million years– and occurred four times faster in the branch leading to humans compared to other primates.
The scientists conclude that the drop in the sharpness of smell is a purely Homo sapiens feature. It probably stemmed from the development of the brain in the human direction – a direction that entailed increased emphasis on vision, development of the ability to distinguish colors and the capacity to identify other members of the species by facial appearance rather than by smell.
The research team included Yoav Gilad, a Ph.D. student at the Weizmann Institutes Feinberg Graduate School who conducted collaborative research at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, his adviser Prof. Doron Lancet, Weizmann graduate student Orna Man, and Prof. Svante Pöäbo, head of the Max Planck Institute in Leipzig.
Prof. Doron Lancets research is supported by the Crown Human Genome Center, Alfried Krupp von Bohlen und Halbach Foundation, the Avraham and Yehudit (Judy) Goldwasser Fund, Ms. Emilia Mosseri, London, Mr. James Klutznick, Chicago, IL, Kalman & Ida Wolens Foundation and the Jean-Jacques Brunschwig Memorial Fund.
Media Contact
More Information:
http://www.weizmann.ac.il/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Future AR/VR controllers could be the palm of your hand
Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…
‘Game changer’ in lithium extraction
Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…
The blue-green sustainable proteins of seaweed
… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…