Study of thyroxine transporter molecule shows how key hormone hitches a lift round body
Findings may aid the development of drugs to treat thyroid disorders
Structural analysis has revealed for the first time how a key messenger in the body’s chemical communication system hooks up with one of the proteins that delivers it to sites of action in the body.
Using X-ray crystallography, scientists from Imperial College London and the University of Hawaii have identified the location of four binding sites on human serum albumin (HSA), the principal protein in blood plasma, to which the chemical messenger thyroxine attaches.
Thyroxine is the primary hormone released from the thyroid gland, and acts on nearly every cell in the body affecting important mechanisms that control, weight, energy level, memory and heart rate.
While HSA is not the major transporter of thyroxine, its quick and direct action provides the most ready supply of the hormone for use around the body.
The findings, which are published online this week in the Proceedings of the National Academy of Science, help to explain how thyroxine regulates metabolic processes and normal physical development, and may aid the development of drugs to treat thyroid disorders.
The structural information also sheds light on the molecular basis of a rare condition, familial dysalbuminemic hyperthyroxemia (FDH), which is caused by mutations in HSA. This harmless genetic disorder is often misdiagnosed as an overactive thyroid gland and treated inappropriately.
Dr Stephen Curry of Imperial’s Department of Biological Sciences and senior author of the study said:
“Our study provides a more complete understanding of how thyroxine binds to HSA. Previously the number and location of binding sites on HSA was not clear. This structural information can now be used to help design synthetic forms of thyroxine to treat thyroid disorders. It will allow more detailed analysis of how the two molecules interact in the body, which can be used to make more effective candidate drugs.”
HSA is the most abundant protein in the circulatory system. Its principal function is to transport fatty acids, but it is also one of three proteins that delivers thyroxine.
Levels of thyroxine circulating in the body are used as a biochemical indicator to help gauge how active the thyroid gland is. The researchers sought a better understanding of how the hormone binds to the proteins that transport it in order to improve diagnosis of the various thyroid disorders.
Together with colleagues in Hawaii, the Imperial team, who are the main academic research group in the world working on albumin structures, examined the crystallised structure of HSA bound to thyroxine under three different conditions: in the presence or absence of fatty acids and using mutant forms of HSA.
“The shape of the HSA-thyroxine complex alters dramatically when fatty acids bind to the protein,” explained Dr Curry. “The main difference is that when fatty acids are present, their binding creates a new binding site.
“This is an unprecedented example of the complex interplay between the binding of fatty acids and thyroxine to the protein. Although fatty acids and thyroxine compete with one another to bind to several sites on the protein, there is also an element of cooperation through the creation of an additional binding site for the hormone.
“The interaction between the FDH causing mutant forms of HSA and thyroxine increases the binding affinity between the two molecules 10 to 15 fold. People with this condition present with normal levels of thyroxine that is not bound to transporter proteins but when the total level of thyroxine is looked at it’s much higher. Our research will allow a more accurate diagnosis of this condition in the future.”
The research was supported by the American Heart Foundation, Hawaii Affiliate and the Biotechnology and Biological Sciences Research Council (UK).
Media Contact
More Information:
http://www.ic.ac.ukAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Future AR/VR controllers could be the palm of your hand
Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…
‘Game changer’ in lithium extraction
Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…
Linking data on genetics, traits and environment
…gives crop breeders a wider lens. Understanding how both environmental conditions and genetic makeup affect crops is essential to developing varieties that are more resilient and productive. But the intricate…