UIC researchers pinpoint genes involved in cancer growth

In a study made possible by the sequencing of the human genome, scientists at the University of Illinois at Chicago have identified 57 genes involved in the growth of human tumor cells.

Some of these genes appear to be linked with the growth of cancerous cells only – not healthy cells – making them possible targets for new drugs that could halt the spread of disease without necessarily compromising normal processes.

The research relied on a strategy pioneered in the laboratory of Igor Roninson, distinguished professor of molecular genetics in the UIC College of Medicine. The strategy involves cutting human DNA into tiny, random fragments, inserting the fragments into a mammalian cell using a vector, or delivery vehicle, and inducing them to express their genetic information.

Some of the fragments prove to be biologically active by interfering with the function of the genes from which they are derived.

In the new study, certain fragments inhibited the multiplication of breast cancer cells by shutting down the genes necessary for cell growth. The experiment enabled researchers in Roninson’s laboratory, led by research assistant professor Thomas Primiano, to locate 57 genes involved in cell proliferation.

They identified the genes by matching the growth-inhibiting fragments with sequences in the human genome.

“Our strategy was validated by the fact that more than half of the genes we identified were already known to play key roles in the growth of cells or the development of cancers,” Roninson said. “Many of the other genes, however, were not previously known to be involved in cell division and proliferation. In fact, the functions of some of these genes were entirely unknown.”

Analysis of animal studies conducted by other investigators allowed Roninson’s group to determine which genes were likely involved in the growth of tumor cells but not normal cells. In so-called “knockout” mice, 20 of the genes the scientists identified as essential for the growth of breast cancer cells had previously been disabled.

Lacking any of six of these genes, the animals died in utero. But mice missing any of the other 14 genes matured to adulthood, suffering only limited problems in specific organs.

“Obviously, the best drug targets would be genes that are needed only by cancer cells,” Roninson said.

One of the genes the UIC researchers identified manufactures a protein found on the cell surface called L1-CAM, which is involved in the development of the nervous system and was not previously known to play a role in cancer cell growth.

Using antibodies to L1-CAM to disturb its function, the researchers stopped the growth of breast, colon and cervical cancer cells in a petri dish, but left unimpaired the growth of normal breast tissue cells and fibroblasts, which make up connective tissue.

This final experiment, Roninson said, confirmed the value of his team’s study.

“One of the main reasons for sequencing the human genome was the hope that this knowledge would help scientists find molecular targets for new and better medicines,” Roninson said. “The genes we have identified clearly have the potential to serve as targets for novel therapeutics in the fight against cancer.”

Other UIC researchers involved in the study were Mirza Baig, Anil Maliyekkel, Bey-Dih Chang, Stacey Fellars and Justin Sadhu. The UIC team collaborated with scientists Sergey Axenovich and Tatyana Holzmayer at PPD Discovery, Inc.

Media Contact

Sharon Butler EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…