Adult mouse bone marrow stem cells can become cells of the nervous system

Findings similar to results with embryonic and neural stem cells

University of Minnesota researchers show that adult bone marrow stem cells can be induced to differentiate into cells of the midbrain. The findings, published in the online early edition of the Proceedings of the National Academy of Sciences, suggest that adult bone-marrow-derived stem cells may one day be useful for treating diseases of the central nervous system, including Parkinson’s disease.

The potential of these adult stem cells, termed multipotent adult progenitor cells (MAPCs), were the subject of research reported in Nature in June 2002. Today’s published research findings show specific cell differentiation for a specific goal. While this type of cell differentiation has been shown to occur from embryonic and neural stem cells, this is the first time adult bone-marrow-derived cells have been shown to generate dopamine like neurons.

“We’re able to show in vitro generation of functional dopamine producing cells from adult bone marrow stem cells needed for therapy of Parkinson’s,” said lead investigator Catherine Verfaillie, M.D., director of the university’s Stem Cell Institute. “This further proves similarity of the MAPCs with embryonic stem cells.

“Again, while adult stem cells hold great promise, side by side comparison of adult and embryonic stem cells must be done to determine which stem cells are most useful in treating a particular disease,” said Verfaillie.

Study results can be found online at http://www.pnas.org.

Media Contact

Sarah Youngerman EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…

Researcher Claudia Schmidt analyzing Arctic fjord water samples affected by glacial melt.

Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems

The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…