Making new muscle: Researchers in Rome produce a mouse that can regenerate its tissues
Researchers at the European Molecular Biology Laboratory (EMBL) and the University of Rome “La Sapienza” have found a way to restore some of the “regenerative” ability of tissues, which happens naturally in animals at the embryonic stage of development, but is lost shortly after birth. The scientists work, published this week in PNAS, gives new insight into how stem cells can be mobilized across the body, and how they take on specialized functions in tissue.
“Many labs have reported the integration of stem cells into various types of tissues, but on a small scale,” says Prof. Nadia Rosenthal, Coordinator of EMBLs Mouse Programme in Monterotondo, Italy. “This is the first study to show that stem cells can be mobilized to achieve a major regeneration of damaged tissue.”
In a collaboration with the group of Antonio Musarò at the University of Rome, the scientists investigated muscle tissue in mice, discovering that stem cells can travel large distances to reach an injury. They also found a special form of a protein called mIGF-1 induces the muscle to send the distress signal that summons them.
“This form of IGF-1 is produced in the cells of embryos, but that production shuts down quickly after birth,” says Rosenthal. “It is also produced in quick bursts when muscles are injured. This made us think it might play a role in regenerating damaged tissues.”
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Magnetic Memory Unlocked with Energy-Efficient MRAM
Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices. Stepping up the Memory Game: Overcoming the Limitations of Traditional RAM Osaka, Japan –…
Next-Level System Security: Smarter Access Control for Organizations
Cutting-Edge Framework for Enhancing System Security Researchers at the University of Electro-Communications have developed a groundbreaking framework for improving system security by analyzing business process logs. This framework focuses on…
How Microbial Life Shapes Lime Formation in the Deep Ocean
Microorganisms are everywhere and have been influencing the Earth’s environment for over 3.5 billion years. Researchers from Germany, Austria and Taiwan have now deciphered the role they play in the…