Yeast mutations offer window into human disease

Different combinations of genetic mutations may give rise to diverse human traits, including complex diseases such as schizophrenia, say scientists at the University of Toronto and McGill University in Montreal.

Drs. Brenda Andrews and Charles Boone of U of T and Howard Bussey of McGill used simple yeast cells to demonstrate that there are many different combinations of genetic mutations that can lead to cell death or reduced cell fitness. The research team will now focus on mapping gene interactions for those yeast genes that are similar to human genes. Their study appears in the Feb. 6 issue of the journal Science.

The researchers crossed a yeast strain carrying a mutation in a particular gene of interest with a collection or “array” of other yeast strains to determine which gene pairs were lethal. The team studied more than 4,000 of these interactions involving gene pairs and was able to provide a large scale “genetic interaction network” that provokes new ideas about how genes interact to produce different traits.

For example, the researchers determined that genes arrange themselves in “neighbourhoods” or small networks. A gene is more likely to interact with its “neighbour,” they discovered, than with more distant genes. Each yeast gene has on average about 30 of these interactions over the life of a cell, many more than had been predicted by previous experiments. By understanding the composition of these genetic “neighbourhoods,” it is possible to predict which genes will interact and which traits will result when two genes combine.

“Constructing these networks will help human geneticists to focus their research on the culprits of disease,” says Andrews, chair of U of T’s medical genetics and microbiology department. “If we can begin to construct these kinds of networks in an intelligent way, we might directly accelerate the discovery of those genes that are lethal when combined.”

The study has sparked interest among other researchers in developing techniques for mapping the genetic “neighbourhoods” of more complex organisms.

“Because our global genetic network studies map out how cells work, these studies have implications that may help us in understanding the foundation of complex inherited diseases, such as glaucoma, type II diabetes and schizophrenia,” says Bussey, a professor in McGill’s biology department.

The study’s lead authors are Amy Hin Yan Tong, a U of T graduate student in the molecular and medical genetics department, and Guillaume Lesage, a post-doctoral student at McGill. The international team included researchers at Harvard Medical School, Cornell University, the University of Pennsylvania, the University of California, the Institute of Biochemistry in Zurich, Switzerland, MRC Laboratory in Cambridge, England, and Memorial Sloan-Kettering Cancer Center in New York.

The study received funding from the Canadian Institutes of Health Research, the Canadian Foundation for Innovation and Genome Canada through the Ontario Genomics Institute and Genome Quebec.

NOTE: A photo of researcher Tong with robotics equipment used in the research may be obtained from Elaine Smith at U of T.

CONTACTS:

Brenda Andrews
University of Toronto
416-978-8562
brenda.andrews@utoronto.ca

Charles Boone
University of Toronto
416-946-7620
charlie.boone@utoronto.ca

Elaine Smith
U of T Public Affairs
416-978-5949
elaine.smith@utoronto.ca

Howard Bussey
McGill University
Can be reached through Anie Perrault, Genome Canada,
613-296-7292 (cell)

Sylvain-Jacques Desjardins
University Relations Office
McGill University
514-398-6752
sylvain-jacques.desjardins@mcgill.ca

Media Contact

Elaine Smith University of Toronto

More Information:

http://www.utoronto.ca/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…