Flies offer clues to anesthesia-resistant memory

A fruit fly gene called radish, and the newly identified protein it encodes, have opened doors to understanding the genes and neuronal networks that govern a special type of memory, termed anesthesia-resistant memory. Researchers had previously known that for most animals — not just humans — loss of consciousness from anesthesia causes amnesia for recently experienced events. In contrast, for reasons that are not well understood, older memories are resistant to the effects of anesthesia. With the help of model organisms such as Drosophila, different types of memory are also now beginning to be identified on the basis of genetic requirements. This week, new analysis of a fly gene required for anesthesia-resistant memory sheds light on the nature of this memory type, and what makes it different from other kinds of stable memories.

The new work, reported by Josh Dubnau and colleagues at Cold Spring Harbor Laboratory in New York, was based on some well established observations regarding learning and memory in the fruit fly. In Drosophila, memory of an odor-electric shock association is at first easily erased by anesthesia-induced loss of consciousness. Within the first hour after this memory forms, however, it becomes more resistant to anesthesia. For over a decade, memory researchers have known that this form of memory, anesthesia-resistant memory, does not form in a mutant strain of flies bearing a mutation in the gene called radish. Until now, however, the molecular basis for the radish memory defect has been a mystery.

Dubnau and colleagues have now identified the radish gene, and shown that it encodes a protein known as a phospholipase-A2, an enzyme that cleaves phospho-lipids on the cell membrane to release a chemical called arachidonic acid (AA). While the mechanism of action of AA in stabilizing memory still is unknown, this molecule has already been implicated in memory formation in chickens and rodents. The current genetic findings from flies therefore suggest that the radish/phospholipase A2-dependent form of memory spans distantly related animal phyla. The authors also traced expression of the radish gene in the fly brain, leading them to identify a network of neurons that had not been previously known to function in memory. The new insights into radish gene function provide geneticists with a valuable foothold to investigate the cellular mechanisms of anesthesia-resistant memory.

Ann-Shyn Chiang, Allison Blum, Jody Barditch, Ying-Hsiu Chen, Shu-Ling Chiu, Michael Regulski, J. Douglas Armstrong, Tim Tully, and Josh Dubnau: “radish Encodes a Phospholipase-A2 and Defines a Neural Circuit Involved in Anesthesia-Resistant Memory”

Published in Current Biology, Volume 14, Number 4 February 17, 2004, pages 263-272.

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.cell.com/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…