Odorants enhance survival of olfactory neurons
A new study finds that the olfactory sensory neurons (OSNs) exhibit activity-dependent survival, a property that may be critical for an animals ability to maximize and retain responsiveness to crucial odorants in its environment. The research, published in the March 25 issue of Neuron, finds that a molecular signaling pathway linked to neuronal survival in the central nervous system plays a significant role in odor-induced enhancement of olfactory cell survival.
It is well known that the olfactory epithelium can adapt in the very short term to odorant stimulation by receptor desensitization and habituation. However, the ability of odorants to stimulate long-lasting changes in OSNs has been suggested but not clearly elucidated. Dr. Daniel R. Storm and colleagues from The University of Washington in Seattle developed a novel method to monitor the survival of OSNs after stimulation with odorants and to examine the signaling pathways required for cell survival. OSNs were labeled using a sophisticated noninvasive adenovirus technique. Exposure to odorants enhanced the survival of subpopulations of unperturbed neurons and neurons that were exposed to a stimulus that normally causes cell death. Further investigation revealed that the ERK/MAP kinase/CREB pathway is directly involved in odorant-stimulated rescue of OSNs.
The researchers conclude that OSNs are capable of dynamic long-term adjustment to sensory information in the environment. This is significant for animals because the persistence of odorant-detecting cells would be dictated by odorants encountered in the environment, some of which might be critical for survival. These results are also important for humans. “The identification of a chemical pathway that protects olfactory sensory neurons from cell death has important medical implications since olfactory sensory neurons die during a number of conditions including sinusitis and head injury. In addition, we lose about 1% of our sense of smell per year as we age, and olfaction loss is associated with several neurodegenerative diseases, including Alzheimers and Parkinsons disease. The data in this paper suggests that drugs that activate the Erk/MAP kinase pathway may be used to protect olfactory sensory neurons from cell death associated with sinusitis, head injury, aging, and neurodegenerative diseases,” explains Dr. Storm.
William C. Watt, Hitomi Sakano, Zong-Yi Lee, Jane E. Reusch, Kien Trinh and Daniel R. Storm: “Odorant Stimulation Enhances Survival of Olfactory Sensory Neurons via MAPK and CREB”
Published in Neuron, Volume 41, Number 6, 25 March 2004
Media Contact
More Information:
http://www.cell.com/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…