DNA-binding strands used to create molecular zipper

Virginia Tech students and faculty members are creating releasable coatings and thin films using the same chemistry that nature uses to bind the double helix of DNA.

They will present their research at the 227th national meeting of the American Chemical Society in Anaheim, Calif., March 28-April 1, 2004.

“We are coating a patterned surface with accepting molecules then applying donating molecules – that is, using molecular recognition — to create a molecular zipper,” explains Tim Long of Blacksburg, professor of chemistry in the College of Science at Virginia Tech.

Applications would be strong, multilayered structures that might be used for body armor, as well as for releasable coatings and films.

The researchers are using heterocycles – the same groups that bind strands of DNA. “They can be selected to recognize specific complementary groups based on the attributes desired,” Long says.

The paper, “Multiple hydrogen bonding on surfaces (PMSE 135),” will be presented by Casey L. Elkins, a graduate student from Coopersville, Mich. Her co-authors are doctoral student Kalpana Viswanathan of Madras, India, Adhesive and Sealant Science Professor Thomas C. Ward of Blacksburg, Va., and Long. The presentation will be at 2:40 p.m. on Monday, March 29, at Coast Anaheim Hotel in the Park B room as part of the Division of Polymeric Materials: Science and Engineering symposium on Functional Polymer Thin Films for Switching, Sensing, and Adaptive Applications.

Elkins received her undergraduate degree from Michigan State University and Viswanathan received her master of science degree from Indian Institute of Technology, Madras.

Contact for more information
Dr. Timothy Long, telong@vt.edu or 540-231-2480
Casey Elkins, chudelso@vt.edu
Kalpana Viswanathan, kviswana@vt.edu

Media Contact

Susan Trulove EurekAlert!

More Information:

http://www.technews.vt.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…