Could mice hold the secret to longer life?
Scientists from the University of Aberdeen, the Aberdeen-based Rowett Research Institute and the Medical Research Council (MRC) in Cambridge have made a major breakthrough in understanding how metabolism affects lifespan.
In a seven-year study of mice they found that those with the highest metabolic rate lived the longest, raising the prospect that the effect could be mimicked in humans.
Scientists have long thought that a high metabolic rate was linked to a shortened life-span. The present discovery turns this century old belief on its head and changes dramatically our understanding of the regulation of life-span.
Metabolism is the means by which nutrients are broken down to smaller building blocks and chemical energy, which are used to make new body materials and to do work.
The researchers discovered that the most metabolically active 25% of the mice studied, far from having shorter life-spans, in fact lived 36% longer than the least active. If the same effects are mimicked in humans then the finding would imply that a higher metabolic rate could add an extra 27 years to the average human lifespan.
When the muscles of the most metabolically active mice were examined, they were found to contain factors that increased their metabolism by making it less efficient.
Although the scientists do not yet fully understand how these factors work, it is suspected that while the make the metabolism less efficient, on the positive side they reduce the generation of toxic by-products called “oxygen free radicals”.
Media Contact
More Information:
http://www.blackwell-synergy.comAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
An Endless Loop: How Some Bacteria Evolve Along With the Seasons
The longest natural metagenome time series ever collected, with microbes, reveals a startling evolutionary pattern on repeat. A Microbial “Groundhog Year” in Lake Mendota Like Bill Murray in the movie…
Witness Groundbreaking Research on Achilles Tendon Recovery
Achilles tendon injuries are common but challenging to monitor during recovery due to the limitations of current imaging techniques. Researchers, led by Associate Professor Zeng Nan from the International Graduate…
Why Prevention Is Better Than Cure—A Novel Approach to Infectious Disease Outbreaks
Researchers have come up with a new way to identify more infectious variants of viruses or bacteria that start spreading in humans – including those causing flu, COVID, whooping cough…