SLU scientists have identified the first gene regulating programmed cell death in plant embryos
A research team at the Swedish University of Agricultural Sciences, SLU, has succeeded in isolating a novel gene that regulates cell death in plant embryos. This is a world first.
The team consists of scientists from the Department of Plant Biology and Forest Genetics, headed by Peter Bozhkov and Sara von Arnold. The team has discovered programmed cell death in plant embryos and has recently identified the first gene that regulates this cell death. This research has been conducted in collaboration with Durham University, England, and the Karolinska Institute, Stockholm.
“This is a tiny, tiny step that we have taken in basic research on plant development. In the long term this may be of significance in plant breeding and in forestry,” says Sara von Arnold, professor of forest tree cell biology at SLU.
The scientists hope the new knowledge about how programmed cell death is regulated can be exploited to increase production and bolster resistance in plants.
Programmed cell death is a natural and vital process during the life cycle of multicellular organisms. Among other purposes, it regulates the form of organisms during certain developmental stages and removes superfluous or damaged cells. It could be said that cell death is a kind of suicide that is regulated by a “death gene.” This has been studied extensively in animal cells.
The 2002 Nobel laureates in medicine and physiology identified key genes that regulate the development of organs and programmed cell death in worms. These genes are crucial to the functioning of the body. When the balance between production of new cells and cell death is disturbed, diseases like cancer and several neurological disorders arise.
Compared with animal cells, plant cells have developed completely different mechanisms to regulate programmed cell death. With the SLU scientists‚ discovery, recently published in the scientific journal Current Biology, it is now possible to study how these different regulatory mechanisms have evolved in plants and animals.
Authors:
Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B and Bozhkov PV. (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Current Biology 14: R339-R340.
Media Contact
More Information:
http://www.vr.se/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
AI to improve brain cancer diagnosis, monitoring, treatment
Recommendations published in The Lancet Oncology call for good clinical practice of new technologies to modernize decades-old standard of care for brain cancer patients. An international, multidisciplinary team of leading…
AI tool ‘sees’ cancer gene signatures in biopsy images
AI tool reads biopsy images… To determine the type and severity of a cancer, pathologists typically analyze thin slices of a tumor biopsy under a microscope. But to figure out…
Skull bone marrow expands throughout life
…and remains healthy during aging. Blood vessels and stromal cells in the bone marrow create an ideal environment for hematopoietic stem cells to continuously produce all blood cells. During aging,…