U of T Team Develops Mutated Yeast Strains To Aid Geneticists

University of Toronto microbiologists have used pattern recognition software to discover the function of yeast genes essential to cell life – knowledge that could help scientists determine what causes cells to die, as well as what they need to live.

“Given the similarities between the yeast and human genomes, our work should promote advances in genomics research in both yeast and humans,” said Professor Timothy Hughes of U of T’s Department of Medical Genetics and Microbiology, who led the research team.

A paper published in the July 9 issue of the journal Cell describes how the researchers engineered mutations to 700 of the 1,000 yeast genes that are essential to cell life. They analyzed the mutant strains by making several basic measurements — cell size, cell shape and gene levels – and by evaluating a cell’s potential to grow in a variety of media. They then took these data and did computerized analysis of entire categories of genes in order to predict the functions of individual genes, applying a standard technique for pattern discovery used in fields ranging from marketing to face recognition.

“It’s similar to ordering a book from Amazon.com,” said Hughes. “After you’ve placed an order, they use the information they’ve gathered to predict your likes and dislikes. The next time you log onto the computer, they extrapolate and suggest other books you might enjoy. They also could use the data to predict other things – for example, your age and your gender – which might, on the surface, seem unrelated to books.”

“We’re hoping our use of this technique to predict the function of yeast genes is going to become a classical example of how to do this in biology.”

To create each mutated strain, the researchers used a technique in which adding the drug doxycycline to the yeast cells disables an individual gene. This technique is a reliable alternative to the more common method of causing mutations by radiation, because the mutations are engineered rather than random.

The 700 yeast strains developed by Hughes’ team are now available commercially to other researchers and 300 more strains are under development. Yeast is a staple of genomic research because many human genes are similar to yeast genes.

This research was funded by the Canadian Institutes of Health Research and Genome Canada.

Contact:

Timothy Hughes Elaine Smith
Department of Medical Genetics & Microbiology U of T Public Affairs

416-946-8260
t.hughes@utoronto.ca

416-978-5949
elaine.smith@utoronto.ca

Media Contact

Timothy Hughes University of Toronto

More Information:

http://www.utoronto.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…

Microscopic view of blood cells representing ASXL1 mutation research findings.

ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation

Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…