U of T research answers key question in biochemistry
Characterize intermediates at atomic level
University of Toronto scientists are helping to answer one of the most important questions in biochemistry, one that has implications for treating neurodegenerative diseases: how do proteins fold into their three-dimensional structures?
In research published in the July 29 issue of Nature, U of T post-doctoral fellow Dmitry Korzhnev and his supervisor, Professor Lewis Kay of the Department of Biochemistry, become the first researchers to characterize at an atomic level of detail the intermediate — or substructure — that forms as a protein folds to its 3-D state.
“Understanding how proteins fold is one of the Holy Grails of biochemistry,” says Kay. “The intermediates that we can study make up only one or two per cent of the population of protein molecules in solution. Its hard to study them because they are present at such low levels. This is the first time we have been able to characterize an intermediate state at this level of detail.”
Using nuclear magnetic resonance (NMR) spectroscopy, the researchers obtained data that allowed them to develop crude pictures of intermediate states for small, fairly simple proteins. They hope to refine their methods and apply them to other systems with intermediate states.
If scientists can understand the pathway a protein takes from one state to another, they may be able to predict protein structure, something that cant be done very reliably at present. The ability to accurately predict protein structure has implications for drug design, as well as for improving commercial products.
Understanding the pathway a protein follows will also help scientists understand errors in folding, a problem linked to diseases such as cystic fibrosis and Alzheimers.
Media Contact
More Information:
http://www.utoronto.caAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…